622 research outputs found

    Single-cell analysis reveals individual spore responses to simulated space vacuum

    Get PDF
    Outer space is a challenging environment for all forms of life, and dormant spores of bacteria have been frequently used to study the survival of terrestrial life in a space journey. Previous work showed that outer space vacuum alone can kill bacterial spores. However, the responses and mechanisms of resistance of individual spores to space vacuum are unclear. Here, we examined spores’ molecular changes under simulated space vacuum (~10−5 Pa) using micro-Raman spectroscopy and found that this vacuum did not cause significant denaturation of spore protein. Then, live-cell microscopy was developed to investigate the temporal events during germination, outgrowth, and growth of individual Bacillus spores. The results showed that after exposure to simulated space vacuum for 10 days, viability of spores of two Bacillus species was reduced up to 35%, but all spores retained their large Ca2 +-dipicolinic acid depot. Some of the killed spores did not germinate, and the remaining germinated but did not proceed to vegetative growth. The vacuum treatment slowed spore germination, and changed average times of all major germination events. In addition, viable vacuum-treated spores exhibited much greater sensitivity than untreated spores to dry heat and hyperosmotic stress. Among spores’ resistance mechanisms to high vacuum, DNA-protective α/β−type small acid-soluble proteins, and non- homologous end joining and base excision repair of DNA played the most important roles, especially against multiple cycles of vacuum treatment. Overall, these results give new insight into individual spore’s responses to space vacuum and provide new techniques for microorganism analysis at the single-cell level

    Electron-correlation effects in appearance-potential spectra of Ni

    Full text link
    Spin-resolved and temperature-dependent appearance-potential spectra of ferromagnetic Nickel are measured and analyzed theoretically. The Lander self-convolution model which relates the line shape to the unoccupied part of the local density of states turns out to be insufficient. Electron correlations and orbitally resolved transition-matrix elements are shown to be essential for a quantitative agreement between experiment and theory.Comment: LaTeX, 6 pages, 2 eps figures included, Phys. Rev. B (in press

    Fluctuations of company yearly profits versus scaled revenue: Fat tail distribution of Levy type

    Full text link
    We analyze annual revenues and earnings data for the 500 largest-revenue U.S. companies during the period 1954-2007. We find that mean year profits are proportional to mean year revenues, exception made for few anomalous years, from which we postulate a linear relation between company expected mean profit and revenue. Mean annual revenues are used to scale both company profits and revenues. Annual profit fluctuations are obtained as difference between actual annual profit and its expected mean value, scaled by a power of the revenue to get a stationary behavior as a function of revenue. We find that profit fluctuations are broadly distributed having approximate power-law tails with a Levy-type exponent α≃1.7\alpha \simeq 1.7, from which we derive the associated break-even probability distribution. The predictions are compared with empirical data.Comment: 6 pages, 6 figure

    Image resonance in the many-body density of states at a metal surface

    Get PDF
    The electronic properties of a semi-infinite metal surface without a bulk gap are studied by a formalism that is able to account for the continuous spectrum of the system. The density of states at the surface is calculated within the GW approximation of many-body perturbation theory. We demonstrate the presence of an unoccupied surface resonance peaked at the position of the first image state. The resonance encompasses the whole Rydberg series of image states and cannot be resolved into individual peaks. Its origin is the shift in spectral weight when many-body correlation effects are taken into account

    Lifetimes of image-potential states on copper surfaces

    Full text link
    The lifetime of image states, which represent a key quantity to probe the coupling of surface electronic states with the solid substrate, have been recently determined for quantum numbers n≤6n\le 6 on Cu(100) by using time-resolved two-photon photoemission in combination with the coherent excitation of several states (U. H\"ofer et al, Science 277, 1480 (1997)). We here report theoretical investigations of the lifetime of image states on copper surfaces. We evaluate the lifetimes from the knowledge of the self-energy of the excited quasiparticle, which we compute within the GW approximation of many-body theory. Single-particle wave functions are obtained by solving the Schr\"odinger equation with a realistic one-dimensional model potential, and the screened interaction is evaluated in the random-phase approximation (RPA). Our results are in good agreement with the experimentally determined decay times.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let

    Self-energy of image states on copper surfaces

    Get PDF
    We report extensive calculations of the imaginary part of the electron self-energy in the vicinity of the (100) and (111) surfaces of Cu. The quasiparticle self-energy is computed by going beyond a free-electron description of the metal surface, either within the GW approximation of many-body theory or with inclusion, within the GWΓ\Gamma approximation, of short-range exchange-correlation effects. Calculations of the decay rate of the first three image states on Cu(100) and the first image state on Cu(111) are also reported, and the impact of both band structure and many-body effects on the electron relaxation process is discussed.Comment: 8 pages, 5 figures, to appear in Phys. Rev.
    • …
    corecore