184 research outputs found

    Remote Medication Status Prediction for Individuals with Parkinson's Disease using Time-series Data from Smartphones

    Full text link
    Medication for neurological diseases such as the Parkinson's disease usually happens remotely away from hospitals. Such out-of-lab environments pose challenges in collecting timely and accurate health status data. Individual differences in behavioral signals collected from wearable sensors also lead to difficulties in adopting current general machine learning analysis pipelines. To address these challenges, we present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset, which contains 62,182 remote multi-modal test records collected on smartphones from 487 patients. The proposed method shows promising results in predicting three medication statuses objectively: Before Medication (AUC=0.95), After Medication (AUC=0.958), and Another Time (AUC=0.976) by examining patient-wise historical records with the attention weights learned through a Transformer model. Our method provides an innovative way for personalized remote health sensing in a timely and objective fashion which could benefit a broad range of similar applications.Comment: Accepted to ICDH-2023. Camera ready with supplementary materia

    Genetic Adverse Selection: Evidence from Long-Term Care Insurance and Huntington Disease

    Get PDF
    Individual, personalized genetic information is increasingly available, leading to the possibility of greater adverse selection over time, particularly in individual-payer insurance markets; this selection could impact the viability of these markets. We use data on individuals at risk for Huntington disease (HD), a degenerative neurological disorder with significant effects on morbidity, to estimate adverse selection in long-term care insurance. We find strong evidence of adverse selection: individuals who carry the HD genetic mutation are up to 5 times as likely as the general population to own long-term care insurance. We use these estimates to make predictions about the future of this market as genetic information increases. We argue that even relatively limited increases in genetic information may threaten the viability of private long-term care insurance.

    The mPower Study, Parkinson Disease Mobile Data Collected Using Researchkit

    Get PDF
    Current measures of health and disease are often insensitive, episodic, and subjective. Further, these measures generally are not designed to provide meaningful feedback to individuals. The impact of high-resolution activity data collected from mobile phones is only beginning to be explored. Here we present data from mPower, a clinical observational study about Parkinson disease conducted purely through an iPhone app interface. The study interrogated aspects of this movement disorder through surveys and frequent sensor-based recordings from participants with and without Parkinson disease. Benefitting from large enrollment and repeated measurements on many individuals, these data may help establish baseline variability of real-world activity measurement collected via mobile phones, and ultimately may lead to quantification of the ebbs-and-flows of Parkinson symptoms. App source code for these data collection modules are available through an open source license for use in studies of other conditions. We hope that releasing data contributed by engaged research participants will seed a new community of analysts working collaboratively on understanding mobile health data to advance human health

    Using AI to Measure Parkinson's Disease Severity at Home

    Full text link
    We present an artificial intelligence system to remotely assess the motor performance of individuals with Parkinson's disease (PD). Participants performed a motor task (i.e., tapping fingers) in front of a webcam, and data from 250 global participants were rated by three expert neurologists following the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). The neurologists' ratings were highly reliable, with an intra-class correlation coefficient (ICC) of 0.88. We developed computer algorithms to obtain objective measurements that align with the MDS-UPDRS guideline and are strongly correlated with the neurologists' ratings. Our machine learning model trained on these measures outperformed an MDS-UPDRS certified rater, with a mean absolute error (MAE) of 0.59 compared to the rater's MAE of 0.79. However, the model performed slightly worse than the expert neurologists (0.53 MAE). The methodology can be replicated for similar motor tasks, providing the possibility of evaluating individuals with PD and other movement disorders remotely, objectively, and in areas with limited access to neurological care

    Glide and Superclimb of Dislocations in Solid 4^4He

    Full text link
    Glide and climb of quantum dislocations under finite external stress, variation of chemical potential and bias (geometrical slanting) in Peierls potential are studied by Monte Carlo simulations of the effective string model. We treat on unified ground quantum effects at finite temperatures TT. Climb at low TT is assisted by superflow along dislocation core -- {\it superclimb}. Above some critical stress avalanche-type creation of kinks is found. It is characterized by hysteretic behavior at low TT. At finite biases gliding dislocation remains rough even at lowest TT -- the behavior opposite to non-slanted dislocations. In contrast to glide, superclimb is characterized by quantum smooth state at low temperatures even for finite bias. In some intermediate TT-range giant values of the compressibility as well as non-Luttinger type behavior of the core superfluid are observed.Comment: Updated version submitted to JLTP as QFS2010 proceedings; 11 pages, 6 figure

    Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity:The Mobile Parkinson Disease Score

    Get PDF
    IMPORTANCE: Current Parkinson disease (PD) measures are subjective, rater-dependent, and assessed in clinic. Smartphones can measure PD features, yet no smartphone-derived rating score exists to assess motor symptom severity in real-world settings. OBJECTIVES: To develop an objective measure of PD severity and test construct validity by evaluating the ability of the measure to capture intraday symptom fluctuations, correlate with current standard PD outcome measures, and respond to dopaminergic therapy. DESIGN, SETTING, AND PARTICIPANTS: This observational study assessed individuals with PD who remotely completed 5 tasks (voice, finger tapping, gait, balance, and reaction time) on the smartphone application. We used a novel machine-learning-based approach to generate a mobile Parkinson disease score (mPDS) that objectively weighs features derived from each smartphone activity (eg, stride length from the gait activity) and is scaled from 0 to 100 (where higher scores indicate greater severity). Individuals with and without PD additionally completed standard in-person assessments of PD with smartphone assessments during a period of 6 months. MAIN OUTCOMES AND MEASURES: Ability of the mPDS to detect intraday symptom fluctuations, the correlation between the mPDS and standard measures, and the ability of the mPDS to respond to dopaminergic medication. RESULTS: The mPDS was derived from 6148 smartphone activity assessments from 129 individuals (mean [SD] age, 58.7 [8.6] years; 56 [43.4%] women). Gait features contributed most to the total mPDS (33.4%). In addition, 23 individuals with PD (mean [SD] age, 64.6 [11.5] years; 11 [48%] women) and 17 without PD (mean [SD] age 54.2 [16.5] years; 12 [71%] women) completed in-clinic assessments. The mPDS detected symptom fluctuations with a mean (SD) intraday change of 13.9 (10.3) points on a scale of 0 to 100. The measure correlated well with the Movement Disorder Society Unified Parkinson Disease's Rating Scale total (r = 0.81; P < .001) and part III only (r = 0.88; P < .001), the Timed Up and Go assessment (r = 0.72; P = .002), and the Hoehn and Yahr stage (r = 0.91; P < .001). The mPDS improved by a mean (SD) of 16.3 (5.6) points in response to dopaminergic therapy. CONCLUSIONS AND RELEVANCE: Using a novel machine-learning approach, we created and demonstrated construct validity of an objective PD severity score derived from smartphone assessments. This score complements standard PD measures by providing frequent, objective, real-world assessments that could enhance clinical care and evaluation of novel therapeutics

    Predicting ambulatory capacity in Parkinson's disease to analyze progression, biomarkers, and trial design

    Get PDF
    Background: In Parkinson's disease (PD), gait and balance is impaired, relatively resistant to available treatment and associated with falls and disability. Predictive models of ambulatory progression could enhance understanding of gait/balance disturbances and aid in trial design. Objectives: To predict trajectories of ambulatory abilities from baseline clinical data in early PD, relate trajectories to clinical milestones, compare biomarkers, and evaluate trajectories for enrichment of clinical trials. Methods: Data from two multicenter, longitudinal, observational studies were used for model training (Tracking Parkinson's, n = 1598) and external testing (Parkinson's Progression Markers Initiative, n = 407). Models were trained and validated to predict individuals as having a “Progressive” or “Stable” trajectory based on changes of ambulatory capacity scores from the Movement Disorders Society Unified Parkinson's Disease Rating Scale parts II and III. Survival analyses compared time-to-clinical milestones and trial outcomes between predicted trajectories. Results: On external evaluation, a support vector machine model predicted Progressive trajectories using baseline clinical data with an accuracy, weighted-F1 (proportionally weighted harmonic mean of precision and sensitivity), and sensitivity/specificity of 0.735, 0.799, and 0.688/0.739, respectively. Over 4 years, the predicted Progressive trajectory was more likely to experience impaired balance, loss of independence, impaired function and cognition. Baseline dopamine transporter imaging and select biomarkers of neurodegeneration were significantly different between predicted trajectory groups. For an 18-month, randomized (1:1) clinical trial, sample size savings up to 30% were possible when enrollment was enriched for the Progressive trajectory versus no enrichment. Conclusions: It is possible to predict ambulatory abilities from clinical data that are associated with meaningful outcomes in people with early PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    NIH Disease Funding Levels and Burden of Disease

    Get PDF
    BACKGROUND: An analysis of NIH funding in 1996 found that the strongest predictor of funding, disability-adjusted life-years (DALYs), explained only 39% of the variance in funding. In 1998, Congress requested that the Institute of Medicine (IOM) evaluate priority-setting criteria for NIH funding; the IOM recommended greater consideration of disease burden. We examined whether the association between current burden and funding has changed since that time. METHODS: We analyzed public data on 2006 NIH funding for 29 common conditions. Measures of US disease burden in 2004 were obtained from the World Health Organization's Global Burden of Disease study and national databases. We assessed the relationship between disease burden and NIH funding dollars in univariate and multivariable log-linear models that evaluated all measures of disease burden. Sensitivity analyses examined associations with future US burden, current and future measures of world disease burden, and a newly standardized NIH accounting method. RESULTS: In univariate and multivariable analyses, disease-specific NIH funding levels increased with burden of disease measured in DALYs (p = 0.001), which accounted for 33% of funding level variation. No other factor predicted funding in multivariable models. Conditions receiving the most funding greater than expected based on disease burden were AIDS (2474M),diabetesmellitus(2474 M), diabetes mellitus (390 M), and perinatal conditions (297M).Depression(297 M). Depression (719 M), injuries (691M),andchronicobstructivepulmonarydisease(691 M), and chronic obstructive pulmonary disease (613 M) were the most underfunded. Results were similar using estimates of future US burden, current and future world disease burden, and alternate NIH accounting methods. CONCLUSIONS: Current levels of NIH disease-specific research funding correlate modestly with US disease burden, and correlation has not improved in the last decade

    Multidisciplinary care for people with Parkinson’s disease:the new kids on the block!

    Get PDF
    INTRODUCTION: Parkinson's disease (PD) is a chronic multisystem disorder that causes a wide variety of motor and non-motor symptoms. Over time, the progressive nature of the disease increases the risk of complications such as falls and loss of independence, having a profound impact on quality of life. The complexity and heterogeneity of symptoms therefore warrant a holistic, multidisciplinary approach. Specific healthcare professionals, e.g. the movement disorders neurologist and the PD nurse specialist, are considered essential members of this multidisciplinary team. However, with our increasing knowledge about different aspects of the disease, other disciplines are also being recognized as important contributors to the healthcare team. Areas covered: The authors describe a selection of these relatively newly-recognized disciplines, including the specialist in vascular medicine, gastroenterologist, pulmonologist, neuro-ophthalmologist, urologist, geriatrician/elderly care physician, palliative care specialist and the dentist. Furthermore, they share the view of a person with PD on how patients and caregivers should be involved in the multidisciplinary team. Finally, they have included a perspective on the new role of the movement disorder neurologist, with care delivery via 'tele-neurology'. Expert commentary: Increased awareness about the potential role of these 'new' professionals will further improve disease management and quality of life of PD patients

    Metadata Framework to Support Deployment of Digital Health Technologies in Clinical Trials in Parkinson’s Disease

    Get PDF
    Sensor data from digital health technologies (DHTs) used in clinical trials provides a valuable source of information, because of the possibility to combine datasets from different studies, to combine it with other data types, and to reuse it multiple times for various purposes. To date, there exist no standards for capturing or storing DHT biosensor data applicable across modalities and disease areas, and which can also capture the clinical trial and environment-specific aspects, so-called metadata. In this perspectives paper, we propose a metadata framework that divides the DHT metadata into metadata that is independent of the therapeutic area or clinical trial design (concept of interest and context of use), and metadata that is dependent on these factors. We demonstrate how this framework can be applied to data collected with different types of DHTs deployed in the WATCH-PD clinical study of Parkinson’s disease. This framework provides a means to pre-specify and therefore standardize aspects of the use of DHTs, promoting comparability of DHTs across future studies
    • …
    corecore