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ABSTRACT: Background: In Parkinson’s disease
(PD), gait and balance is impaired, relatively resistant to
available treatment and associated with falls and disabil-
ity. Predictive models of ambulatory progression could
enhance understanding of gait/balance disturbances and
aid in trial design.
Objectives: To predict trajectories of ambulatory abilities
from baseline clinical data in early PD, relate trajectories
to clinical milestones, compare biomarkers, and evaluate
trajectories for enrichment of clinical trials.
Methods: Data from two multicenter, longitudinal,
observational studies were used for model training
(Tracking Parkinson’s, n = 1598) and external testing
(Parkinson’s Progression Markers Initiative, n = 407).
Models were trained and validated to predict individuals
as having a “Progressive” or “Stable” trajectory based
on changes of ambulatory capacity scores from the
Movement Disorders Society Unified Parkinson’s Dis-
ease Rating Scale parts II and III. Survival analyses
compared time-to-clinical milestones and trial outcomes
between predicted trajectories.
Results: On external evaluation, a support vector
machine model predicted Progressive trajectories using

baseline clinical data with an accuracy, weighted-F1
(proportionally weighted harmonic mean of precision and
sensitivity), and sensitivity/specificity of 0.735, 0.799, and
0.688/0.739, respectively. Over 4 years, the predicted
Progressive trajectory was more likely to experience
impaired balance, loss of independence, impaired func-
tion and cognition. Baseline dopamine transporter imag-
ing and select biomarkers of neurodegeneration were
significantly different between predicted trajectory
groups. For an 18-month, randomized (1:1) clinical trial,
sample size savings up to 30% were possible when
enrollment was enriched for the Progressive trajectory
versus no enrichment.
Conclusions: It is possible to predict ambulatory abilities
from clinical data that are associated with meaningful
outcomes in people with early PD. © 2023 The Authors.
Movement Disorders published by Wiley Periodicals LLC
on behalf of International Parkinson and Movement Dis-
order Society.
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Introduction

Parkinson’s disease (PD) global prevalence has more
than doubled to over 6 million individuals between
1990 and 2016, making it the fastest growing neurolog-
ical disorder. Over this same time span, deaths and
disability-adjusted life years because of PD have also
doubled.1 Impaired gait and balance are major contrib-
utors to PD disability, while injuries from falls are a
leading cause of PD-related deaths.2

Gait and balance disturbances are common features
of PD and worsen with progression. Deterioration in
the ability to walk independently (ie, ambulatory capac-
ity) negatively impacts quality of life,3 reduces
independence,4,5 and increases the risk of falls.6-9

Dopaminergic medications improve some aspects of
gait, but many features appear refractory to current
pharmacologic interventions or may even be worsened
with their introduction.10-13 Furthermore, fall preven-
tion strategies are currently insufficient as an increasing
number of people with PD suffer hip fractures as a
result of falls.14

It remains challenging to predict impaired mobility
because of heterogeneity in the presentation and pro-
gression of the impairments in PD, complicating appro-
priate targeting of gait preservation therapies.13

Although commonly used subtyping classification of
PD incorporates posture and gait to account for symp-
tomatic heterogeneity, the stability and usefulness of
these subtypes in predicting progression have been
questioned.15,16 Therefore, it remains a high research
priority to develop prognostic models for gait and bal-
ance disturbances in PD.17

The aims of this investigation were to: (1) develop
and validate prognostic models that predict rapid and
stable trajectories on the ambulatory capacity scale in
early PD; (2) compare rates at which predicted trajec-
tory groups reach key clinical milestones; (3) explore
baseline biomarker differences between predicted trajec-
tory groups; and, (4) evaluate the predicted trajectory
groups as enrollment enrichment factors to potentially
reduce sample sizes in clinical trials that use Movement
Disorders Society Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) score changes as the outcome.

Methods
Data

Data from two observational multicenter study
cohorts were used to develop progression models of
ambulatory capacity in early PD: the original
Parkinson’s Progression Markers Initiative (PPMI),
downloaded October 26, 2022 from the PPMI
database (http://www.ppmi-info.org/access–data–specimens/
download–data), RRID:SCR_006431 (for up–to–date

information on the study, visit www.ppmi–info.
org); and, Tracking Parkinson’s (Tracking) (https://
www.trackingparkinsons.org.uk/). Both studies pro-
spectively follow individuals diagnosed with PD to
assess the progression of clinical symptoms. Partici-
pants with >1 observed ambulatory capacity score over
a follow-up duration of �4 years in PPMI (visit 10)
and � 4.5 years in Tracking (visit 9) were included in
the analysis. Additional key inclusion criteria and study
design elements are described elsewhere (Supplementary
Methods).18,19

Ambulatory Capacity Measure
Ambulatory capacity was measured using a construct

of the MDS-UPDRS, calculated as the sum of items
2.12 (walking and balance), 2.13 (freezing), 3.10 (gait),
3.11 (freezing of gait), and 3.12 (postural stability)
(Supplementary Table S1). For each item, symptom
severity is either self-assessed by the participant (part II
questions) or assessed by a rater (part III questions).
Increasing scores signify more severe disease symptoms
and highly correlate with self-reported measures of
ambulatory capacity.20,21 The majority of scores were
measured before initiation of dopaminergic treatment
(untreated), or after initiation of dopaminergic treat-
ment while in the on state (94% of Tracking scores,
and 80% of PPMI scores). Therefore, untreated and on
scores were used for modeling, whereas off scores were
not used because of data sparseness.
Latent class linear mixed-models were used to derive

distinct trajectories of longitudinal changes in ambula-
tory capacity scores. Linear trajectory models with up
to 10 latent classes were tested on both study cohorts
separately. The optimal number of latent classes was
defined by minimization of the Bayesian Information
Criterion, and that the mean maximum posterior prob-
abilities for assignment to the latent classes are ≥80%.
Latent mixed modeling was conducted in R 3.6.2 using
the “lcmm” package (Supporting Data).22

Classification Models
For prediction modeling, the latent class trajectories

were collapsed into two progression categories of either
“Progressive” or “Stable” trajectories. The progression
categories were determined by the estimated fixed-effect
slope parameter estimates (β) of each latent trajectory
class: Progressive was defined by those within a trajec-
tory class that had an estimated β ≥ 1.0 point/year; and,
Stable as β < 1.0 point/year. The cutoff of 1.0 repre-
sents approximately double the estimated average rate
of ambulatory capacity score progression in PPMI,
Tracking, and other PD cohorts (Supplementary
Fig. S1).23,24

Support vector machine (SVM) models (“scikit-learn”
Python package with linear kernel, C = 1) were
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developed to predict Progressive versus Stable trajecto-
ries from baseline data. We performed five repetitions
of a stratified three-fold cross validation of the SVM
model. Because of class imbalance, synthetic
oversampling was applied individually to each training
split (“SMOTE” Python package with k = 5 neigh-
bors).25 Each oversampled training split was tested on
the holdout dataset in Tracking and externally on the
full PPMI data. The prediction performance of the
models were evaluated according to accuracy,
weighted-F1 score (harmonic mean of precision and
sensitivity but weighted proportionally to the class
sizes), area under the receiving operating characteristic
curve (AUROC), sensitivity, specificity, and Matthew’s
correlation coefficient (MCC) (interpretation is similar
to that of a Pearson correlation coefficient, with �1 the
worst value and + 1 the best value).26 Logistic regres-
sion and random forest classifier models were also
developed, but performances were worse or no better
than the SVM (Supplementary Methods; Supplemen-
tary Table S2).

Prognostic Features
Data collected at screening or baseline study visits

were used for prediction of disease progression. The
following baseline features were initially considered in
the classification models based on their availability in
both datasets, and clinician expert input: age, sex, body
mass index, MDS-UPDRS parts I-III individual items,
Scales for Outcomes in PD-Autonomic dysfunction,
Epworth Sleepiness Scale total score, Rapid Eye Move-
ment Sleep Behavior Disorder Questionnaire total score,
Montreal Cognitive Assessment (MoCA) total score, and
history of select comorbidities (Supplementary Methods).
Features were ranked and selected based on their impor-
tance as quantified by Shapley additive explanations
(SHAP) values (“shap” Python package), which quantify
the average contribution of each feature to the predic-
tions.27,28 Ultimately, 23 baseline features were included
in the model after multiple rounds of backward elimina-
tion steps resulting in a combination of features producing
an optimal MCC.

Time-To-Clinical Milestones
Predicted Stable and Progressive trajectories were fur-

ther evaluated by comparing time-to-clinical progres-
sion milestones in each cohort. The following time to
clinical milestones were assessed out to visit 10 of PPMI
and visit nine of Tracking:

• Hoehn and Yahr (HY) score ≥3, indicating at least
the presence of balance impairment with mild to
moderate disease severity (loss of recovery from a
retropulsive stress);

• modified Schwab and England Activities of Daily
Living (ADL) score <80%, corresponding to a

threshold of not being completely independent in
performing daily activities;

• scoring ≥3 (moderate to severe problems) on any one
of the following functional items of the MDS-UPDRS
questions: (2.3) swallowing and chewing, (2.4) eating
tasks, (2.5) dressing, (2.6) hygiene, (2.8) doing
hobbies and other activities, and (3.1) speech.

• MoCA score ≤23, corresponding to a cutoff for diag-
nosis of cognitive impairment.29

Similar analyses were performed, but stratifying instead
by baseline motor phenotype (postural instability gait dis-
order [PIGD] vs. tremor dominant [TD]),30 allowing for
comparison of the contribution of previously identified
potential baseline subtyping approaches.
The endpoint event rates were based on Kaplan–

Meier estimates stratified by predicted progression
(Progressive vs. Stable), and comparisons of curves
using the log-rank test. Cox proportional hazards
regression determined the hazard ratios between
predicted progression groups. Analyses were conducted
in R using the “survival” and “prodlim” packages.

Exploratory Biomarker Comparison
The PPMI study collected additional imaging, bio-

fluid, and digital sensor (Verily Study Watch) bio-
markers (Supplementary Methods) that were not
available in Tracking, and therefore, not tested as fea-
tures in the prediction models. To explore if there were
differences in these biomarkers between predicted tra-
jectories, unpaired t tests and χ2 tests compared base-
line values between predicted Progressive and Stable
trajectories in PPMI only. Significance levels were not
adjusted for multiple comparisons.

Clinical Trial Enrichment
Potential clinical trial outcome measures were evalu-

ated using the model-predicted Progressive and Stable
trajectory groups from PPMI. Trial outcomes included
time to changes in MDS-UPDRS scores from baseline
that are considered the minimal clinically meaningful
changes to patients out to visit 5 (�year 1.5)31,32:

• MDS-UPDRS part III ≥5-point increase, or, time to
initiation of levodopa/dopamine agonist (part
III/treatment outcome);

• part III/treatment outcome, and MDS-UPDRS part
II ≥3-point increase;

• part III/treatment outcome, and MDS-UPDRS part
II ≥3-point increase, and MDS-UPDRS part I ≥3-point
increase.

The required sample sizes for clinical trials to detect
various treatment effects using these outcomes were
computed for a hypothetical intervention, comparing
the enrichment of enrolling only model-predicted Pro-
gressive cases versus having no enrichment. The clinical
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trial scenario was 1:1 (active:placebo) randomization
with 18 months of follow-up. Sample sizes were calcu-
lated for detecting 20% to 50% reductions (at 2.5%
increments) in outcome events at the significance level
of 0.05 and power of 80%. Percent changes in sample
sizes between enrichment versus no enrichment were
calculated for each treatment difference and averaged.

Results

The modeling dataset included 1598 and 407
participants from Tracking and PPMI, respectively
(Supplementary Fig. S2). Individuals from the Track-
ing cohort were on average older, had a longer disease
duration, more severe baseline mean HY and

TABLE 1 Summary of baseline characteristics of PPMI and Tracking Parkinson’s disease study cohorts

Characteristic Tracking Parkinson’s (n = 1598) PPMI (n = 407) P-valuea

Age, years 67.1 � 9.0 61.6 � 9.8 <0.0001

Sex

Male 1028 (64.3) 266 (65.4) 0.70

Female 570 (35.7) 141 (34.6)

Race

Caucasian 1564 (97.9) 382 (93.9) <0.0001b

Asian 10 (0.6) 8 (2.0)

Black 4 (0.3) 7 (1.7)

>1 race 4 (0.3) 8 (2.0)

Other 2 (0.1) 0

Missing/not specified 14 (0.9) 2 (0.5)

PD duration at baseline, years 1.3 � 0.9 0.5 � 0.5 <0.0001

Hoehn and Yahr stagec 1.7 � 0.6 1.6 � 0.5 <0.0001

Hoehn and Yahr by stagec <0.0001d

1 503 (31.9) 181 (44.5)

1.5 287 (18.2) –

2.0 520 (33.0) 224 (55.0)

2.5 188 (11.9) –

3 76 (4.8) 2 (0.5)

4 2 (0.13) 0

5 1 (0.06) 0

Baseline ambulatory capacity 2.6 � 2.4 1.1 � 1.1 <0.0001

Diagnostic feature: prominent freezing early in coursee

Yes 19 (1.3) 1 (0.3) 0.07

No 1434 (98.7) 392 (99.7)

Diagnostic feature: likely to fall if not extra carefule 0.0014

Yes 65 (4.5) 4 (1.0)

No 1392 (95.5) 389 (99.0)

Note: Data are mean � standard deviation, or n (%).
Abbreviations: PD, Parkinson’s disease; PPMI, Parkinson’s Progression Markers Initiative.
aStudent t test or χ2 test.
bCaucasian versus non-Caucasian.
cHoehn and Yahr stage at baseline missing for 21 participants from Tracking Parkinson’s cohort.
dProportion with Hoehn and Yahr stage ≥3.
eThe Diagnostic Features questionnaire was not part of the PPMI protocol until Amendment 4 (�2 years after the release of the original study protocol).
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ambulatory capacity score, and reported more likely
to fall than PPMI participants (Table 1). Both cohorts
had processes in place to identify potential cases of
misdiagnosis as data emerged, using consensus
criteria. Identified cases of misdiagnosis were excluded
from our analyses.

Ambulatory Capacity Trajectory Modeling
Latent class mixed-modeling of longitudinal ambulatory

capacity scores from the Tracking cohort resulted in 88%
with a Stable trajectory and 12% with a Progressive tra-
jectory (Supplementary Fig. S3A and Supplementary
Tables S3 and S4). In PPMI, 93% and 7% had Stable
and Progressive trajectories, respectively (Supplementary
Fig. S3B and Supplementary Tables S3 and S5).
Predicting these trajectory labels from baseline data

with the SVM model using the Tracking testing dataset
resulted in mean (95% CI) accuracy of 0.711 (0.699,
0.722), weighted-F1 of 0.760 (0.751, 0.769), AUROC
0.698 (0.684, 0.713), sensitivity/specificity of 0.682

(0.649, 0.716)/0.714 (0.699, 0.730) and MCC of 0.270
(0.251, 0.289). Performance metrics were similar when
externally tested in PPMI (Fig. 1A).
Overall, baseline age as a continuous variable was

the most important feature in discriminating between
predicted trajectories (Figs. 1B and Supplementary
Fig. S4); as age increased, there was a higher likelihood
of having a Progressive trajectory. Baseline age was also
assessed separately as a feature by itself, but overall
performance of this model decreased compared to the
model using all baseline features (Supplementary
Table S6). At the individual level, the relative contribu-
tions of each feature varied in determining an individ-
ual’s trajectory. For example, problems turning in bed,
arising from deep sitting positions, and handwriting
were the main factors driving a Progressive trajectory
for one individual (Fig. 1C), whereas older age was the
dominant factor for another (Fig. 1D) (see Supplemen-
tary Fig. S5 for additional examples).
There was little overlap between baseline PIGD and

model-predicted Progressive trajectory in PPMI; 21.2%

FIG. 1. Model performance metrics and importance of features for predicting “Stable” versus “Progressive” trajectories. (A) Overall mean [95% confi-
dence interval] model performance metrics in Tracking Parkinson’s and Parkinson’s Progression Markers Initiative (PPMI) datasets. (B) Beeswarm plot
of SHAP values (x-axis) per baseline feature (y-axis) with each point representing a SHAP value for a predictor and an individual PPMI participant. The
values of the features are represented by color, with red indicating high values (or having the symptom if a binary predictor) and blue indicating low
values (or not having the symptom if a binary predictor). Baseline features with asterisks (*) next to them represent those that are assessed by the
patient/caregiver. (C,D) Waterfall plots generated for two examples of individual participants correctly predicted as having a Progressive trajectory.
These plots display the value of the model output probability of a Progressive trajectory (f(x) = 1) or Stable trajectory (f(x) = 0) (x-axis), and the top five
features with their individual values contributing to that participant’s predicted trajectory (y-axis). The contribution of each feature is represented as
either pushing the prediction toward a Stable trajectory (blue pentagon) or toward a Progressive trajectory (red pentagon) relative to the null model
(E[f(x)]). AUROC, area under receiving operating curve; MCC, Matthew’s correlation coefficient; MDS-UPDRS, Movement Disorders Society Unified
Parkinson’s Disease Rating Scale; MoCA, Montreal Cognitive Assessment; REM, rapid eye movement; SCOPA, Scale For Outcomes in Parkinson’s
Disease Autonomic. [Color figure can be viewed at wileyonlinelibrary.com]
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of the predicted Progressive group was also classified as
PIGD at baseline (Supplementary Table S7). There was
more overlap, however, in the Tracking cohort; 54.5%
of the predicted Progressive group was also baseline
PIGD (Supplementary Table S8).

Time-To-Clinical Milestones
In PPMI, the occurrences of reaching key clinical

milestones over �4 years follow-up were greater in the
predicted Progressive versus Stable groups. An HY ≥3
was reached by 18.4% of PPMI participants (36.4%
Progressive and 11.1% Stable), with a rate four times
higher in the Progressive group (hazard ratio [HR], 4.2
[95% CI, 2.6, 6.6]) (Fig. 2A). An ADL <80% was
reached by 19.9% of PPMI participants (32.2% Pro-
gressive and 14.9% Stable), with a rate more than two

times higher in the Progressive group (HR, 2.6 [95%
CI, 1.7, 4.0]) (Fig. 2B). Scoring moderate or worse
severity on select functional MDS-UPDRS items
occurred in 19.7% of PPMI participants (38.1% Pro-
gressive and 12.1% Stable), and was nearly four times
higher among the Progressive group (HR, 3.9 [95% CI,
2.5, 6.0]) (Fig. 2C). Cognitive impairment (MoCA
≤23), occurred in 31.0% of PPMI participants (44.9%
Progressive and 25.3% Stable), at a rate two times
higher for the Progressive group (HR, 2.0 [95% CI,
1.4, 2.9]) (Fig. 2D). The proportional hazards assump-
tion for each outcome was confirmed by Schoenfeld
residual tests (Supplementary Fig. S6).
In the Tracking cohort, similar patterns and HRs

were observed for each of these clinical milestones as
well as for HY ≥2.5 (Supplementary Fig. S7). However,

FIG. 2. Kaplan–Meier curves comparing time-to-clinical milestones between predicted “Progressors” and “Stable” groups in the Parkinson’s Progres-
sion Markers Initiative (PPMI) cohort. HR with 95% CI derived from Cox proportional hazards models and P-values from likelihood ratio tests. (A) Time
to Hoehn and Yahr score ≥ 3. (B) Time to Schwab and England Activities of Daily Living score <80%. (C) Time to score ≥ 3 on any one of the following
MDS-UPDRS items 2.3 (choking at least once in the past week to needing a feeding tube), 2.4 (needing help with many eating tasks to needing help
with most or all), 2.5 (needing help for many dressing tasks to needing help for most or all), 2.6 (needing help with many hygiene tasks to needing help
with most or all), 2.8 (having major problems doing hobbies/activities to unable to do most or all), or 3.1 (some speech difficult to understand to most is
difficult or unintelligible). (D) Time to MoCA score ≤ 23. 95% CI, 95% confidence interval; HR, hazard ratio; HY, Hoehn and Yahr; SE ADL, Schwab and
England Activities of Daily Living; MDS-UPDRS, Movement Disorders Society Unified Parkinson’s Disease Rating Scale; MoCA, Montreal Cognitive
Assessment. [Color figure can be viewed at wileyonlinelibrary.com]

6 Movement Disorders, 2023

V E N U T O E T A L

http://wileyonlinelibrary.com


TABLE 2 Comparison of various biomarker values between predicted “Progressive” and “Stable” trajectories in the PPMI cohort that were not
included as features

Biomarker (n for
progressive; n for stable)a

Model-predicted progression trajectory

P-valuebProgressive Stable

Baseline striatal binding ratios from dopamine transporter imaging

Mean striatum (116; 287) 1.29 (1.22, 1.37) 1.45 (1.40, 1.49) 0.0006

Left striatum (116; 287) 2.56 (2.40, 2.72) 2.88 (2.78, 2.98) 0.0009

Right striatum (116; 287) 2.62 (2.46, 2.78) 2.91 (2.81, 3.01) 0.0003

Mean putamen (116; 287) 0.75 (0.70, 0.80) 0.84 (0.81, 0.87) 0.004

Left putamen (116; 287) 0.73 (0.67, 0.80) 0.83 (0.79, 0.87) 0.01

Right putamen (116; 287) 0.77 (0.71, 0.83) 0.86 (0.82, 0.90) 0.02

Mean caudate (116; 287) 1.84 (1.73, 1.94) 2.05 (1.99, 2.11) 0.0007

Left caudate (116; 287) 1.83 (1.72, 1.94) 2.05 (1.99, 2.12) 0.0007

Right caudate (116; 287) 1.85 (1.73, 1.96) 2.05 (1.98, 2.12) 0.003

Baseline cerebrospinal fluid biomarkers

A-β 1–42, pg/mL (113; 281) 908.2 (818.8, 997.7) 913.8 (868.9, 958.8) 0.9

α-Synuclein, pg/mL (114; 283) 1588 (1450, 1727) 1475 (1401, 1549) 0.2

Phosphorylated τ, pg/mL (113; 274) 16.4 (15.2, 17.6) 14.1 (13.6, 14.6) 0.0009

Total τ, pg/mL (120; 291) 184.5 (171.8, 197.2) 162.2 (156.6, 167.9) 0.002

Albumin, mg/L (94; 241) 242.6 (187.6, 297.6) 171.9 (157.7, 186.1) 0.02

IgG, mg/L (94; 241) 25.6 (21.8, 29.3) 22.5 (19.4, 25.5) 0.2

IL-6, pg/mL (54; 152) 4.3 (3.3, 5.3) 3.9 (3.5, 4.4) 0.5

NfL, pg/mL (55; 159) 118.8 (103.1, 134.5) 95.8 (87.1, 104.4) 0.01

Baseline blood, plasma, serum measures

Serum NfL, pg/mL (109; 267) 16.3 (14.7, 18.0) 11.6 (10.9, 12.3) <0.0001

Serum urate, mg/dL (116; 286) 320.2 (305.0, 335.4) 315.6 (306.8, 324.5) 0.61

Plasma HDL, mg/dL (48; 105) 55.5 (50.7, 60.2) 57.0 (53.2, 60.8) 0.62

Plasma LDL, mg/dL (48; 104) 103.5 (93.6, 113.4) 109.1 (102.0, 116.2) 0.37

Plasma triglycerides, mg,dL (48; 105) 124.6 (105.9, 143.4) 110.1 (101.1, 119.2) 0.18

Plasma total cholesterol, mg/dL (48; 105) 183.1 (172.1, 194.1) 189.4 (180.7, 198.1) 0.4

Whole blood GCase activity, umol/L/hr (88; 208) 11.2 (10.5, 11.9) 11.4 (10.9, 11.8) 0.7

DJ-1 RNA, counts (47; 168) 1062 (974, 1150) 1102 (1043, 1160) 0.5

Genetics

Genetic risk score33 (115; 282) �0.01038 (�0.01114, �0.00963) �0.00889 (�0.00937, �0.00842) 0.001

GBA1, n (%) (117; 288)

Carrier of pathogenic variant 2 (1.7) 12 (4.2) 0.22c

LRRK2, n (%) (118; 288)

Carrier of pathogenic variant 1 (0.8) 6 (2.1) 0.39c

APOE, n (%) (118; 289)

E2/E2 or E2/E3 genotype 19 (16.1) 34 (11.8) 0.24c,d

(Continues)
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the overall proportions of Tracking participants
reaching each milestone was higher than in PPMI likely
because of slightly longer follow-up times and greater
baseline disease duration (Supplementary Table S9):
26.5% reached HY ≥3; 33.0% reached ADL <80%;
26.2% reached MDS-UPDRS function ≥3; and, 39.6%
reached MoCA ≤23.
In PPMI, when using baseline motor phenotype

(PIGD, TD) as a stratifying factor in the Cox propor-
tional hazards models instead of the model-predicted
trajectory groups (Stable, Progressive), the HRs were
either reduced (time to HY ≥3: HR, 2.3 [95% CI, 1.4,
3.8]), or were no longer statistically significant (time to
ADL <80%: HR, 1.6 [0.96, 2.8]; time to MDS-UPDRS
functional item ≥3: HR, 1.7 [0.98, 2.9]; time to MoCA
≤23: HR, 0.8 [0.5, 1.4]) (Supplementary Fig. S8). The
HRs in Tracking, however, were more equivalent when
comparing between the motor phenotype and model-
predicted estimates (Supplementary Fig. S9).

Exploratory Biomarkers
Comparison of baseline biomarker data from PPMI

between predicted Progressive and Stable trajectories
are summarized in Table 2 and Supplementary
Table S10. The predicted Progressive trajectory had sig-
nificantly reduced mean striatal binding ratios on 123-I
Ioflupane dopamine transporter imaging compared to
the Stable trajectory. Cerebrospinal fluid (CSF) concen-
trations of total τ and phosphorylated τ181 (p-τ181)
were both increased in the predicted Progressive trajec-
tory. Ratios between p-τ181 and α-synuclein and
β-amyloid 1–42 (Aβ1-42) were also elevated among the
Progressive trajectory (Supplementary Table S10). CSF
and serum concentrations of neurofilament light (NfL)
chain were both higher in the predicted Progressive tra-
jectory. The Progressive trajectory group had a more
negative PD genetic risk score,33 but there were no

significant differences in the proportions of individuals
carrying GBA1 or LRRK2 pathogenic variants, and
APOE genotypes. In a digital sensor substudy, the
predicted Progressive trajectory had significantly lower
average hourly step counts, and shorter time being
ambulatory per hour.
Levodopa responsiveness and levodopa equivalent

daily doses (LEDD) were also evaluated where possible.
In PPMI, there were no differences in levodopa respon-
siveness of ambulatory capacity scores between the
predicted trajectory groups (Supplementary Table S11).
For LEDD, in the Tracking cohort, the Progressive
group had higher mean LEDD at baseline versus Stable
(361 vs. 301; P < 0.0001); however, LEDD did not dif-
fer by the final visit (617 vs. 601; P = 0.35). Results
were similar for LEDD in PPMI at the final visit
(Supplementary Results).

Clinical Trial Enrichment
A clinical trial endpoint of minimal clinically mean-

ingful change in MDS-UPDRS part III or initiation of
dopamine therapy over 18 months occurred in 94.1%
and 91.0% of PPMI participants with predicted Pro-
gressive and Stable trajectories, respectively (HR, 1.3;
95% CI, 1.1, 1.7) (Supplementary Fig. S10A). Sample
size calculations with this part III/treatment outcome
measure were reduced on average by 15.9% when
enriching enrollment for predicted Progressive versus
no enrichment (Fig. 3A). Results were similar for the
endpoint combining the part III/treatment outcome
plus a three-point change in MDS-UPDRS part II
(Supplementary Figs. S10B and S11). A composite end-
point of minimal clinically meaningful changes in each
of the MDS-UPDRS parts I, II, and III/treatment out-
come occurred in 52.5% and 37.4% of individuals
with a predicted Progressive trajectory and Stable tra-
jectory, respectively (HR, 1.7; 95% CI, 1.3, 2.4)

TABLE 2 Continued

Biomarker (n for
progressive; n for stable)a

Model-predicted progression trajectory

P-valuebProgressive Stable

E3/E3 genotype 75 (63.6) 178 (61.6) 0.18c,e

E2/E4, E3/E4, E4/E4 genotype 24 (20.3) 77 (26.6)

Digital sensor-based assessment of mobility and gait (Verily Watch sub-study)

Average hourly step count (26, 58) 131.9 (89.3, 174.5) 232.7 (196.7, 268.7) 0.0005

Average hourly ambulatory minutes (26, 60) 3.46 (2.88, 4.03) 4.36 (3.90, 4.81) 0.016

Abbreviations: PPMI, Parkinson’s Progression Markers Initiative; IgG, immunoglobulin G; IL-6, Interleukin 6; Nfl, neurofilament light; HDL, high-density lipoprotein; LDL,
low-density lipoprotein.
aValues presented as mean (95% confidence interval) unless otherwise noted.
bUnpaired t test unless otherwise noted; bolded P-values are those <0.05.
cχ2 test.
dE2/E3 and E2/E2 carriers versus others.
eE4 carriers versus E4 non-carriers.
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(Supplementary Fig. S10C). Average sample size savings
were 31.2% using this composite endpoint when
enriching for a population with a predicted Progressive
trajectory (Fig. 3C).

Discussion

We developed and validated a model to predict clini-
cally relevant PD progression trajectories of ambulatory
ability from baseline clinical assessments and self-
reported symptoms. Having a predicted Progressive tra-
jectory was associated with a rapid and severe course
of disease, including loss of functional abilities, and
worse cognition over 4 years compared to the Stable
trajectory. In the early untreated PD cohort from PPMI,

the model-based predicted categories were not simply a
recapitulation of the PIGD/TD classifications, which are
known to be unstable as disease progresses.15,16,34 Our
predicted trajectory groups in PPMI showed little over-
lap with baseline PIGD/TD phenotypes, and PIGD/TD
was less informative as a stratification factor in time-
to-clinical milestones. Interestingly, there was better
congruence between the predicted trajectory groups
and motor phenotypes in the Tracking cohort. This
could be because of the Tracking cohort being slightly
more advanced and treated, allowing for clearer differ-
entiation of the PIGD/TD subtypes, which can substan-
tially evolve even during the first year of follow-up.16

All of this suggests that our models can identify more
lasting progression trajectories of ambulation early in
disease.
The predicted Progressive and Stable trajectories

showed differences in baseline biomarkers. The Pro-
gressive group in PPMI had reduced striatal DAT bind-
ing, increased CSF τ, p-τ181, and albumin, and
elevated serum and CSF NfL concentrations. “Co-
pathologies” are common in people with PD, and
aggregation of specific proteins such as Aβ1-42, p-τ,
and α-synuclein have been associated with gait and bal-
ance disturbances in some, but not all studies of
PD.35-40 In addition, prior studies have linked amyloid
and τ with gait disturbances in other populations, such
as cognitively impaired cohorts and older persons with-
out PD.41-43 The CSF p-τ181 levels reported in our Pro-
gressive PD group appear to be lower than those
reported in Alzheimer’s disease patients (26–37 pg/
mL),44,45 so it is not clear whether specific biomarker
values from one disease would be informative for pre-
diction in other diseases. A next step to improve model
discriminability could be to specifically incorporate
these biomarkers as baseline predictors but this requires
a separate cohort with the same clinical and biomarker
measurements.
Concomitant medication use is another source of

information that could be useful toward future efforts
in predicting ambulatory progression. Cholinergic loss
is linked to mobility impairment in PD,46-48 and several
small randomized controlled trials demonstrate benefi-
cial effects on gait, balance, and falls with acetylcholin-
esterase inhibitors.49-52 In contrast, anticholinergic
drugs are associated with freezing of gait and increased
fractures in PD.53,54 Pharmacological interventions
treating other PD symptoms, such as depression
(eg, serotonergic drugs), or interventions targeting other
neurotransmitter systems, such as the noradrenergic
system, could provide prognostic insights as these have
had some effects on freezing and mobility deficits in
PD.55-58

The model-based predictions were tested for their
usefulness in clinical trial enrichment scenarios.
Enriching trial enrollment for participants that are more

FIG. 3. Comparisons of sample size estimates with corresponding treat-
ment differences when enriching enrollment for predicted “Progressors”
(solid pink line) versus no enrichment (dotted black line). Study design
scenario is for a randomized (1:1), placebo-controlled trial with follow-
up time of 18 months to detect treatment differences between hypo-
thetical active and placebo arms ranging from 20% to 50% (α = 0.05
and power of 80%). Scenarios are based on observed data from
Parkinson’s Progression Markers Initiative (PPMI). (A) Time to ≥5 point
change on MDS-UPDRS part III or initiation of levodopa (LD) or dopa-
mine agonist (DA) therapy; (B) time to ≥5 point change on MDS-UPDRS
part III or initiation of LD/DA therapy, and ≥ 3 point change on MDS-
UPDRS part II, and ≥ 3 point change on MDS-UPDRS part I. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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likely to reach an endpoint of interest has been used in
other neurodegenerative diseases.59 The development of
edaravone for amyotrophic lateral sclerosis used an
enrichment strategy based on clinical parameters, like
our approach, to exclude “minimal Progressors,”
thereby enhancing the ability to detect a treatment
effect and ultimately gain regulatory approval.60 Our
models demonstrated �16% sample size savings with
enrichment when using a time to motor change end-
point that has similarities to one being used in an ongo-
ing phase 2 study in early PD (n = 575).61 However,
enriching for predicted Progressives would require a
large screening sample and may be less generalizable to
the greater PD population. Additional analyses that fac-
tor these extra screening costs would be helpful to con-
clude whether optimal trial efficiency is attained with
this approach. As an alternative, one could consider
using the predicted Stable and Progressive trajectory
groups as separate sub-cohorts in a trial so that there
would be more homogenous progression patterns
within cohorts. It is also important to remember that
the model-predicted Progressive and Stable groups pres-
ented here are clinically rooted rather than biomarker-
oriented. Therefore, enrichment strategies that aim to
derive more biologically homogenous groups for
targeting specific therapeutic pathways would likely be
better served with a model or assay specifically designed
for this purpose (eg, identifying progressive individuals
with high τ levels for testing an anti-τ therapy).
The development of stratification tools that define

more homogenous cohorts with emphasis on slow- ver-
sus fast-progressing PD has been a high priority area of
research.17,62 We focused on predicting ambulatory
capacity trajectories, because ambulatory impairment is
burdensome to people living with PD, worsens over
time, and is largely resistant to dopaminergic treat-
ments.13,63,64 However, the ambulatory capacity scores
were derived from the MDS-UPDRS, and is not a scale
specifically designed to measure ambulation alone in
PD. Repurposing the MDS-UPDRS in this fashion could
lead to measurement restrictions. For example, most
people with PD do not have significant gait and balance
issues until later in the disease, increasing the chance of
floor effects with the ambulatory capacity scale. Floor
effects result in difficulties in differentiating among those
at the lowest end of the scale. Therefore, it is possible
that there could be undetected progression earlier in dis-
ease because of scale crudeness, and that more refined
ambulatory trajectories could be detected with more sen-
sitive measures (eg, sensors, gait tracking pads). Interest-
ingly, the predicted Progressive group from our models
demonstrated lower step counts and time ambulatory,
suggesting at least some alignment of our models with
these more precise measures of movement.
We took steps to minimize any effects of misdiagnosis,

which may have contributed to the Progressive group,

by excluding data from individuals who had revised
diagnoses after inclusion in the studies. For PPMI data,
we used a consensus committee analytic dataset, which
involved clinical diagnosis adjudication with an expert
committee that reviewed the clinical, imaging, and other
available biomarker data on all PD participants where
site investigators indicated a change in diagnosis (eg,
progressive supranuclear palsy, multiple system atrophy,
etc.). For Tracking, individuals were removed from the
original dataset based on the principal investigator re-
diagnosis to a non-PD diagnosis (D.G.G. personal com-
munication, January 27, 2023). We acknowledge this
may be imperfect, but when levodopa responsiveness
was evaluated, we saw no differences between the model
categories.
In summary, the modeling approaches used in this

study were able to predict ambulatory capacity progres-
sion Stable and Progressive subtypes, using a combina-
tion of clinical assessments and patient self-reported
symptoms. The predictive performance of our models
demonstrated relatively good discriminability in identi-
fying these trajectories on external validation, which is
crucial to evaluate the generalizability of a model’s
prognostic capabilities, and which few studies in PD
have performed.62 Although the Progressive group was
generally over-predicted, likely because of class imbal-
ance of our target, the overall performance of our
model was in-line with prior PD progression subtype
prognostic models, which typically report accuracies in
the low-to-high 70s.65,66 Although we acknowledge
there is room for improvement in model performance,
the Progressive and Stable trajectory groups consis-
tently aligned with clinical progression milestones, and
exhibited potential use for clinical trials.
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