17 research outputs found

    Structural modification of nanohydroxyapatite Ca10(PO4)6(OH)2 related to Eu3+ and Sr2+ ions doping and its spectroscopic and antimicrobial properties

    Get PDF
    The Eu3+ and Sr2+ ions co-doped hydroxyapatite nanopowders (Ca10(PO4)6(OH)2) were synthesized via a precipitation method and post heat-treated at 500 °C. The concentration of Eu3+ ions was established in the range of 0.5–5 mol% to investigate the site occupancy preference. The concentration of Sr2+ ions was set at 5 mol%. The structural and morphological properties of the obtained materials were studied by an X-ray powder diffraction, a transmission electron microscopy techniques and infrared spectroscopy. As synthesized nanoparticles were in the range of 11–17 nm and annealed particles were in the range of 20–26 nm. The luminescence properties in dependence of the dopant concentration and applied temperature were investigated. The 5D0 → 7F0 transition shown the abnormally strong intensity for annealed materials connected with the increase of covalency character of Eu3+–O2− bond, which arise as an effect of charge compensation mechanism. The Eu3+ ions occupied three possible crystallographic sites in these materials revealed in emission spectra: one Ca(1) site with C3 symmetry and two Ca(2) sites with Cs symmetry arranged as cis and trans symmetry. The antibacterial properties of Eu3+ and Sr2+ ions doped and co-doped hydroxyapatite nanopowders were also determined against Gram-negative pathogens such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli. Obtained results suggest that both europium and strontium ions may implement antibacterial properties for hydroxyapatites. In the most cases, better antibacterial effect we noticed for dopants at 5 mol% ratio. However, the effect is strongly species- and strain-dependent feature

    Isolation and characterisation of KP34—a novel φKMV-like bacteriophage for Klebsiella pneumoniae

    Get PDF
    Bacteriophage KP34 is a novel virus belonging to the subfamily Autographivirinae lytic for extended-spectrum ÎČ-lactamase-producing Klebsiella pneumoniae strains. Its biological features, morphology, susceptibility to chemical and physical agents, burst size, host specificity and activity spectrum were determined. As a potential antibacterial agent used in therapy, KP34 molecular features including genome sequence and protein composition were examined. Phylogenetic analyses and clustering of KP34 phage genome sequences revealed its clear relationships with “phiKMV-like viruses”. Simultaneously, whole-genome analyses permitted clustering and classification of all phages, with completely sequenced genomes, belonging to the Podoviridae

    Culture Media Composition Influences the Antibacterial Effect of Silver, Cupric, and Zinc Ions against Pseudomonas aeruginosa

    No full text
    Different metals, such as silver (Ag), copper (Cu), and zinc (Zn), have been broadly investigated as metals and cations used both in medicine and everyday life due to their broad spectrum of antibacterial activity. Although the antibacterial action of those metals and their ions is well known and studied, the main problem remains in the standardization of experimental procedures to determine the antimicrobial activity as bacteriological media composition might significantly influence the outcome. The presented study aimed to evaluate the appropriability of different culture media (four nutritionally rich and four minimal) in the testing of the antibacterial activity of Ag+, Cu2+, and Zn2+ ions against Pseudomonas aeruginosa. Our investigation revealed the influence of medium ingredients and the presence of phosphates, which significantly reduced the activity of tested metal ions. Moreover, the precipitate formation and decrease in pH in the minimal media were additionally observed. It was assumed that the most favorable medium for metal ion activity testing was Luria-Bertani complex medium and MOPS minimal medium

    Multifunctional lanthanide and silver ions co-doped nano-chlorapatites with combined spectroscopic and antimicrobial properties.

    No full text
    International audienceNanocrystalline chlorapatites (Ca10(PO4)6Cl2) doped with lanthanide ions (Eu3+, Er3+ and Yb3+) and co-doped with silver ions (Ag+) were synthesized by a hydrothermal synthesis route. XRD, TEM, and SAED measurements indicated that the powders are single phased and crystallize with a hexagonal structure with good dispersion. The results showed well crystallized chlorapatite grains with a diameter of about 45 nm. The antimicrobial activity of the nanoparticles against Escherichia coli ATCC 11229 and ATCC 25922, Klebsiella pneumoniae ATCC 700603, and Pseudomonas aeruginosa PAO1 and ATCC 27853 was studied. The best activity was observed for the Eu3+,Ag+:Ca10(PO4)6Cl2 and Eu3+,Ag+,Yb3+:Ca10(PO4)6Cl2 compositions. These multifunctional nanocrystalline powders could be used as a promising antimicrobial agent and material for bio-detection

    Selection and electrophoretic characterization of Salmonella enterica subsp. enterica biocide variants resistant to antibiotics

    No full text
    The proposed research outlines a serious common concern of Salmonella resistance to antimicrobials following prolonged exposure to the disinfectants (biocides). These phenotypes of bacteria could potentially result in hard to treat infections. Typical for avian sources, biocide sensitive S. enterica subsp. enterica serovars: Typhimurium, Enteritidis, Virchow and Zanzibar and their isogenic biocide-tolerant variants were studied in order to investigate bacteriostatic effect of two commercially available biocide formulations: potassium peroxymonosulfate (P) and dodecylamine based structure (triamine, D). We found that cultivating of the bacteria in the medium supplemented with a blend containing P did not influence their antibiotic susceptibility pattern. In contrast, tolerance of bacteria to D compound resulted in resistance to co-trimoxazole, cefotaxime and ciprofloxacin of which two cefotaxime and ciprofloxacin are used commonly for the treatment of invasive Salmonella infections in humans. The dependency between OMP patterns and the level of Salmonella survival in media containing the biocides was observed merely in serovar Typhimurium. In conclusion, these results suggest that Salmonella strains challenged by prolonged treatment with the disinfectants become resistant to antibiotics, however it depends on Salmonella serovar and the chemical used. This paper also highlights the loop-mediated isothermal amplification (LAMP) as a technique that offers great benefits to microbiological detecting of Salmonella species in the samples

    Multifunctionality of Nanosized Calcium Apatite Dual-Doped with Li+/Eu3+ Ions Related to Cell Culture Studies and Cytotoxicity Evaluation In Vitro

    No full text
    Li+/Eu3+ dual-doped calcium apatite analogues were fabricated using a microwave stimulated hydrothermal technique. XRPD, FT-IR, micro-Raman spectroscopy, TEM and SAED measurements indicated that obtained apatites are single-phased, crystallize with a hexagonal structure, have similar morphology and nanometric size as well as show red luminescence. Lithium effectively modifies the local symmetry of optical active sites and, thus, affects the emission efficiency. Moreover, the hydrodynamic size and surface charge of the nanoparticles have been extensively studied. The protein adsorption (lysozyme, LSZ; bovine serum albumin, BSA) on the nanoparticle surface depended on the type of cationic dopant (Li+, Eu3+) and anionic group (OH−, Cl−, F−) of the apatite matrix. Interaction with LSZ resulted in a positive zeta potential, and the nanoparticles had the lowest hydrodynamic size in this protein medium. The cytotoxicity assessment was carried out on the human osteosarcoma cell line (U2OS), murine macrophages (J774.E), as well as human red blood cells (RBCs). The studied apatites were not cytotoxic to RBCs and J774.E cells; however, at higher concentrations of nanoparticles, cytotoxicity was observed against the U2OS cell line. No antimicrobial activity was detected against Gram-negative bacteria with one exception for P. aeruginosa treated with Li+-doped fluorapatite
    corecore