46 research outputs found

    Stoichiometry, polarity, and organometallics in solid-phase extracted dissolved organic matter of the Elbe-Weser estuary

    Get PDF
    Dissolved organic matter (DOM) is ubiquitous in natural waters and plays a central role in the biogeochemistry in riverine, estuarine and marine environments. This study quantifies and characterizes solid-phase extractable DOM and trace element complexation at different salinities in the Weser and Elbe River, northern Germany, and the North Sea. Dissolved organic carbon (DOC), total dissolved nitrogen (TDN), Co and Cu concentrations were analyzed in original water samples. Solid-phase extracted (SPE) water samples were analyzed for DOC (DOCSPE), dissolved organic nitrogen (DONSPE), sulfur (DOSSPE) and trace metal (51V, 52Cr, 59Co, 60Ni, 63Cu, 75As) concentrations. Additionally, different pre-treatment conditions (acidification vs. non-acidification prior to SPE) were tested. In agreement with previous studies, acidification led to generally higher recoveries for DOM and trace metals. Overall, higher DOM and trace metal concentrations and subsequently higher complexation of trace metals with carbon and sulfur-containing organic complexes were found in riverine compared to marine samples. With increasing salinity, the concentrations of DOM decreased due to estuarine mixing. However, the slightly lower relative decrease of both, DOCSPE and DONSPE (~77%) compared to DOSSPE (~86%) suggests slightly faster removal processes for DOSSPE. A similar distribution of trace metal and carbon and sulfur containing DOM concentrations with salinity indicates complexation of trace metals with organic ligands. This is further supported by an increase in Co and Cu concentration after oxidation of organic complexes by UV treatment. Additionally, the complexation of metals with organic ligands (analyzed by comparing metal/DOCSPE and metal/DOSSPE ratios) decreased in the order Cu > As > Ni > Cr > Co and thus followed the Irving-Williams order. Differences in riverine and marine trace metal containing DOMSPE are summarized by their average molar ratios of (C107N4P0.013S1)1000V0.05Cr0.33Co0.19Ni0.39Cu3.41As0.47 in the riverine endmember and (C163N7P0.055S1)1000V0.05Cr0.47Co0.16Ni0.07Cu4.05As0.58 in the marine endmember

    Enhanced analysis of stratified climate archives through upgrade of Laser Ablation Inductively Coupled Plasma Quadrupole to Time of Flight Mass Spectrometry?

    Get PDF
    The analysis of the inorganic composition of climatic archives provides proxies for climate reconstruction. For many applications commercially available inductively coupled plasma quadrupole mass spectrometry (ICP-Q-MS) systems are used for investigations. One aim of this thesis was to test the laser ablation (LA)-ICP-Q-MS method for the analysis of different sample matrices (polar ice cores, bivalves, frozen lake sediment cores). The main limitation of LA-ICP-Q-MS measurements is the number of analysed isotopes, especially for point scan analysis of embedded particles in the ice matrix and the analysis of growth bands of bivalve shells. Analysing as many isotopes as possible is of interest to deduce e.g. the corresponding source region of embedded particles in the ice matrix. The quasi-simultaneous detection of several isotopes of transient signals is realised in ICP-Time of Flight-MS (ICP-TOF-MS) systems. The applicability of the newly developed ICP-TOF-MS system for ice core analysis in climatic research was explored in this thesis. With the present experimental setup the analysis of trace elements in ice core samples is only possible for liquid samples. The accuracy and precision compares to well established ICP-Q-MS systems. Using the Aridus II as sample introduction system the signal sensitivity was 2-10 times lower for the ICP-TOF-MS compared to ICP-Q-MS systems. Calibration studies and investigation of reference materials showed that the calibration range is limited to an order of magnitude of about 10exp4 to 10exp5 except for m/z ratios between 23 amu and 72 amu where it is even lower. The observed minor formation of oxides (0.3%) and high signal sensitivities for rare earth elements (16000-32000 cps and ug L-1; background: 20-80 cps) permits the characterisation of mineral dust in ice core samples at the low ng L-1 concentration range

    Verbesserte Analysen von Klimaarchiven durch den Einsatz eines Laserablations induktiv gekoppelten Plasma Flugzeit Massenspektrometer Systems im Vergleich zu Quadrupol Massenspektrometer Systemen?

    No full text
    The analysis of the inorganic composition of climatic archives provides proxies for climate reconstruction. For many applications commercially available inductively coupled plasma quadrupole mass spectrometry (ICP-Q-MS) systems are used for investigations. One aim of this thesis was to test the laser ablation (LA)-ICP-Q-MS method for the analysis of different sample matrices (polar ice cores, bivalves, frozen lake sediment cores). The main limitation of LA-ICP-Q-MS measurements is the number of analysed isotopes, especially for point scan analysis of embedded particles in the ice matrix and the analysis of growth bands of bivalve shells. Analysing as many isotopes as possible is of interest to deduce e.g. the corresponding source region of embedded particles in the ice matrix. The quasi-simultaneous detection of several isotopes of transient signals is realised in ICP-Time of Flight-MS (ICP-TOF-MS) systems. The applicability of the newly developed ICP-TOF-MS system for ice core analysis in climatic research was explored in this thesis. With the present experimental setup the analysis of trace elements in ice core samples is only possible for liquid samples. The accuracy and precision compares to well established ICP-Q-MS systems. Using the Aridus II as sample introduction system the signal sensitivity was 2-10 times lower for the ICP-TOF-MS compared to ICP-Q-MS systems. Calibration studies and investigation of reference materials showed that the calibration range is limited to an order of magnitude of about 10exp4 to 10exp5 except for m/z ratios between 23 amu and 72 amu where it is even lower. The observed minor formation of oxides (0.3%) and high signal sensitivities for rare earth elements (16000-32000 cps and ug L-1; background: 20-80 cps) permits the characterisation of mineral dust in ice core samples at the low ng L-1 concentration range

    Mineralogical assemblage in sediment core GeoB12309-5 and in area samples from the Makran subduction zone

    No full text
    In order to study late Holocene changes in sediment supply into the northern Arabian Sea, a 5.3 m long gravity core was investigated by high-resolution geochemical and mineralogical techniques. The sediment core was recovered at a water depth of 956 m from the continental slope off Pakistan and covers a time span of 5 kyr. During the late Holocene source areas delivering material to the sampling site did, however, not change and were active throughout the year

    Iron assimilation by the clam Laternula elliptica: Do stable isotopes (δ56Fe) help to decipher the sources?

    Get PDF
    Iron stable isotope signatures (δ56Fe) in hemolymph (bivalve blood) of the Antarctic bivalve Laternula elliptica were analyzed by Multiple Collector - Inductively Coupled Plasma - Mass Spectrometry (MC-ICP-MS) to test whether the isotopic fingerprint can be tracked back to the predominant sources of the assimilated Fe. An earlier investigation of Fe concentrations in L. elliptica hemolymph suggested that an assimilation of reactive and bioavailable Fe (oxyhydr)oxide particles (i.e. ferrihydrite), precipitated from pore water Fe around the benthic boundary, is responsible for the high Fe concentration in L. elliptica (Poigner et al., 2013b). At two stations in Potter Cove (King George Island, Antarctica) bivalve hemolymph showed mean δ56Fe values of −1.19 ± 0.34‰ and -1.04 ± 0.39‰, respectively, which is between 0.5‰ and 0.85‰ lighter than the pool of easily reducible Fe (oxyhydr)oxides of the surface sediments (−0.3‰ to −0.6‰). This is in agreement with the enrichment of lighter Fe isotopes at higher trophic levels, resulting from the preferential assimilation of light isotopes from nutrition. Nevertheless, δ56Fe hemolymph values from both stations showed a high variability, ranging between −0.21‰ (value close to unaltered/primary Fe(oxyhydr)oxide minerals) and −1.91‰ (typical for pore water Fe or diagenetic Fe precipitates), which we interpret as a “mixed” δ56Fe signature caused by Fe assimilation from different sources with varying Fe contents and δ56Fe values. Furthermore, mass dependent Fe fractionation related to physiological processes within the bivalve cannot be ruled out. This is the first study addressing the potential of Fe isotopes for tracing back food sources of bivalves
    corecore