5 research outputs found

    Transcriptome Profiling Reveals New Insights into the Immune Microenvironment and Upregulation of Novel Biomarkers in Metastatic Uveal Melanoma

    Get PDF
    Simple SummaryUveal melanoma (UM) is a rare aggressive eye cancer. Although treatment of the eye tumour is successful, about 50% of UM patients develop a relapse of their cancer in the liver. At present, such advanced disease is not curable. A better understanding of the metastatic UM (mUM) in the liver is essential to improve patient survival. This study examines both the response of immune cells within the liver to the UM secondaries (metastases), as well as the expression of various proteins by the UM cells. Our study demonstrates that there is a limited immune response to the mUM, but reveals that a certain type of reactive immune cell: a protumourigenic subset of macrophage is dominant within the mUM. Our research also reveals novel proteins within the mUM, which are specific to these cells and therefore may be targetable in future therapies.Metastatic uveal melanoma (mUM) to the liver is incurable. Transcriptome profiling of 40 formalin-fixed paraffin-embedded mUM liver resections and 6 control liver specimens was undertaken. mUMs were assessed for morphology, nuclear BAP1 (nBAP1) expression, and their tumour microenvironments (TME) using an "immunoscore" (absent/altered/high) for tumour-infiltrating lymphocytes (TILs) and macrophages (TAMs). Transcriptomes were compared between mUM and control liver; intersegmental and intratumoural analyses were also undertaken. Most mUM were epithelioid cell-type (75%), amelanotic (55%), and nBAP1-ve (70%). They had intermediate (68%) or absent (15%) immunoscores for TILs and intermediate (53%) or high (45%) immunoscores for TAMs. M2-TAMs were dominant in the mUM-TME, with upregulated expression of ANXA1, CD74, CXCR4, MIF, STAT3, PLA2G6, and TGFB1. Compared to control liver, mUM showed significant (p < 0.01) upregulation of 10 genes: DUSP4, PRAME, CD44, IRF4/MUM1, BCL2, CD146/MCAM/MUC18, IGF1R, PNMA1, MFGE8/lactadherin, and LGALS3/Galectin-3. Protein expression of DUSP4, CD44, IRF4, BCL-2, CD146, and IGF1R was validated in all mUMs, whereas protein expression of PRAME was validated in 10% cases; LGALS3 stained TAMs, and MFGEF8 highlighted bile ducts only. Intersegmental mUMs show differing transcriptomes, whereas those within a single mUM were similar. Our results show that M2-TAMs dominate mUM-TME with upregulation of genes contributing to immunosuppression. mUM significantly overexpress genes with targetable signalling pathways, and yet these may differ between intersegmental lesions

    Regulation of the cell cycle and centrosome biology by deubiquitylases

    Get PDF
    Post-translational modification of proteins by ubiquitylation is increasingly recognised as a highly complex code that contributes to the regulation of diverse cellular processes. In humans, a family of almost 100 deubiquitylase enzymes (DUBs) are assigned to six subfamilies and many of these DUBs can remove ubiquitin from proteins to reverse signals. Roles for individual DUBs have been delineated within specific cellular processes, including many that are dysregulated in diseases, particularly cancer. As potentially druggable enzymes, disease-associated DUBs are of increasing interest as pharmaceutical targets. The biology, structure and regulation of DUBs have been extensively reviewed elsewhere, so here we focus specifically on roles of DUBs in regulating cell cycle processes in mammalian cells. Over a quarter of all DUBs, representing four different families, have been shown to play roles either in the unidirectional progression of the cell cycle through specific checkpoints, or in the DNA damage response and repair pathways. We catalogue these roles and discuss specific examples. Centrosomes are the major microtubule nucleating centres within a cell and play a key role in forming the bipolar mitotic spindle required to accurately divide genetic material between daughter cells during cell division. To enable this mitotic role, centrosomes undergo a complex replication cycle that is intimately linked to the cell division cycle. Here, we also catalogue and discuss DUBs that have been linked to centrosome replication or function, including centrosome clustering, a mitotic survival strategy unique to cancer cells with supernumerary centrosomes

    Targeting centrosome amplification, an Achilles' heel of cancer

    Get PDF
    Due to cell-cycle dysregulation, many cancer cells contain more than the normal compliment of centrosomes, a state referred to as centrosome amplification (CA). CA can drive oncogenic phenotypes and indeed can cause cancer in flies and mammals. However, cells have to actively manage CA, often by centrosome clustering, in order to divide. Thus, CA is also an Achilles' Heel of cancer cells. In recent years, there have been many important studies identifying proteins required for the management of CA and it has been demonstrated that disruption of some of these proteins can cause cancer-specific inhibition of cell growth. For certain targets therapeutically relevant interventions are being investigated, for example, small molecule inhibitors, although none are yet in clinical trials. As the field is now poised to move towards clinically relevant interventions, it is opportune to summarise the key work in targeting CA thus far, with particular emphasis on recent developments where small molecule or other strategies have been proposed. We also highlight the relatively unexplored paradigm of reversing CA, and thus its oncogenic effects, for therapeutic gain
    corecore