42 research outputs found

    Heavy pseudoscalar mesons in a Schwinger-Dyson--Bethe-Salpeter approach

    Full text link
    The mass spectrum of heavy pseudoscalar mesons, described as quark-antiquark bound systems, is considered within the Bethe-Salpeter formalism with momentum-dependent masses of the constituents. This dependence is found by solving the Schwinger-Dyson equation for quark propagators in rainbow-ladder approximation. Such an approximation is known to provide both a fast convergence of numerical methods and accurate results for lightest mesons. However, as the meson mass increases, the method becomes less stable and special attention must be devoted to details of numerical means of solving the corresponding equations. We focus on the pseudoscalar sector and show that our numerical scheme describes fairly accurately the π\pi, KK, DD, DsD_s and ηc\eta_c ground states. Excited states are considered as well. Our calculations are directly related to the future physics programme at FAIR.Comment: 9 pages, 3 figures; Based on materials of the contribution "Relativistic Description of Two- and Three-Body Systems in Nuclear Physics", ECT*, October 19-23, 200

    Relativistic Description of Exclusive Deuteron Breakup Reactions

    Get PDF
    The exclusive deuteron break-up reaction is analyzed within a covariant approach based on the Bethe-Salpeter equation with realistic meson-exchange interaction. Relativistic effects in the cross section, tensor analyzing power and polarization transfer are investigated in explicit form. Results of numerical calculations are presented for kinematical conditions in forthcoming p + D reactions at COSY.Comment: 10 LaTeX pages, 4 eps-figure

    Manifestation of three-body forces in three-body Bethe-Salpeter and light-front equations

    Full text link
    Bethe-Salpeter and light-front bound state equations for three scalar particles interacting by scalar exchange-bosons are solved in ladder truncation. In contrast to two-body systems, the three-body binding energies obtained in these two approaches differ significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange-bosons in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.Comment: 24 pages, 8 figures, submitted in Few-Body System
    corecore