202 research outputs found
Membrane capacitive deionisation as an alternative to the 2nd pass for seawater reverse osmosis desalination plant for bromide removal
© 2018 Elsevier B.V. Most Australian surface and ground waters have relatively high concentration of bromide between 400 and 8000 μg/L and even higher concentration in seawater between 60,000–78,000 μg/L. Although bromide is not regulated, even at low concentrations of 50–100 μg/L, it can lead to the formation of several types of harmful disinfection by-products (DBPs) during the disinfection process. One of the major concerns with brominated DBPs is the formation of bromate (BrO3−), a serious carcinogen that is formed when water containing a high concentration of bromide is disinfected. As a result, bromate is highly regulated in Australian water standards with the maximum concentration of 20 μg/L in the drinking water. Since seawater reverse osmosis (SWRO) desalination plays an important role in augmenting fresh water supplies in Australia, SWRO plants in Australia usually adopt 2nd pass brackish water reverse osmosis (BWRO) for effective bromide removal, which is not only energy-intensive to operate but also has higher capital cost. In this study, we evaluated the feasibility of membrane capacitive deionisation (MCDI) as one of the alternatives to the 2nd pass BWRO for effective bromide removal in a more energy efficient way
Statistical and Hydrological Evaluation of TRMM-Based Multi-Satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the Latest Satellite Precipitation Products 3B42V7 Ready for Use in Ungauged Basins?
The objective of this study is to quantitatively evaluate the successive Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products and further to explore the improvements and error propagation of the latest 3B42V7 algorithm relative to its predecessor 3B42V6 using the Coupled Routing and Excess Storage (CREST) hydrologic model in the mountainous Wangchu Basin of Bhutan. First, the comparison to a decade-long (2001-2010) daily rain gauge dataset reveals that: 1) 3B42V7 generally improves upon 3B42V6s underestimation both for the whole basin (bias from -41.15 to -8.38) and for a 0.250.25 grid cell with high-density gauges (bias from -40.25 to 0.04), though with modest enhancement of correlation coefficients (CC) (from 0.36 to 0.40 for basin-wide and from 0.37 to 0.41 for grid); and 2) 3B42V7 also improves its occurrence frequency across the rain intensity spectrum. Using the CREST model that has been calibrated with rain gauge inputs, the 3B42V6-based simulation shows limited hydrologic prediction NSCE skill (0.23 in daily scale and 0.25 in monthly scale) while 3B42V7 performs fairly well (0.66 in daily scale and 0.77 in monthly scale), a comparable skill score with the gauge rainfall simulations. After recalibrating the model with the respective TMPA data, significant improvements are observed for 3B42V6 across all categories, but not as much enhancement for the already well-performing 3B42V7 except for a reduction in bias (from -26.98 to -4.81). In summary, the latest 3B42V7 algorithm reveals a significant upgrade from 3B42V6 both in precipitation accuracy (i.e., correcting the underestimation) thus improving its potential hydrological utility. Forcing the model with 3B42V7 rainfall yields comparable skill scores with in-situ gauges even without recalibration of the hydrological model by the satellite precipitation, a compensating approach often used but not favored by the hydrology community, particularly in ungauged basins
Expression of mitochondrial protein genes encoded by nuclear and mitochondrial genomes correlate with energy metabolism in dairy cattle
Background
Mutations in the mitochondrial genome have been implicated in mitochondrial disease, often characterized by impaired cellular energy metabolism. Cellular energy metabolism in mitochondria involves mitochondrial proteins (MP) from both the nuclear (NuMP) and mitochondrial (MtMP) genomes. The expression of MP genes in tissues may be tissue specific to meet varying specific energy demands across the tissues. Currently, the characteristics of MP gene expression in tissues of dairy cattle are not well understood. In this study, we profile the expression of MP genes in 29 adult and six foetal tissues in dairy cattle using RNA sequencing and gene expression analyses: particularly differential gene expression and co-expression network analyses.
Results
MP genes were differentially expressed (DE; over-expressed or under-expressed) across tissues in cattle. All 29 tissues showed DE NuMP genes in varying proportions of over-expression and under-expression. On the other hand, DE of MtMP genes was observed in < 50% of tissues and notably MtMP genes within a tissue was either all over-expressed or all under-expressed. A high proportion of NuMP (up to 60%) and MtMP (up to 100%) genes were over-expressed in tissues with expected high metabolic demand; heart, skeletal muscles and tongue, and under-expressed (up to 45% of NuMP, 77% of MtMP genes) in tissues with expected low metabolic rates; leukocytes, thymus, and lymph nodes. These tissues also invariably had the expression of all MtMP genes in the direction of dominant NuMP genes expression. The NuMP and MtMP genes were highly co-expressed across tissues and co-expression of genes in a cluster were non-random and functionally enriched for energy generation pathway. The differential gene expression and co-expression patterns were validated in independent cow and sheep datasets.
Conclusions
The results of this study support the concept that there are biological interaction of MP genes from the mitochondrial and nuclear genomes given their over-expression in tissues with high energy demand and co-expression in tissues. This highlights the importance of considering MP genes from both genomes in future studies related to mitochondrial functions and traits related to energy metabolism
Mise en œuvre de façon 'synergique' des mécanismes d'accès et de partage des avantages dans le cadre du Traité sur les ressources phytogénétiques, de la Convention sur la diversité biologique et du Protocole de Nagoya
Le Traité international sur les ressources phytogénétiques pour l'alimentation et l'agriculture (TIRPAA) et la Convention sur la diversité biologique (CDB) engagent leurs Etats-membres à mettre en œuvre des systèmes d'accès et de partage des avantages très différents : d’un côté, le système établi en vertu du TIRPAA vise à renforcer la mise en commun et le partage au niveau international de la diversité génétique ; de l’autre côté, le système de la CDB a pour objectif de maximiser le contrôle souverain de chaque pays sur ses ressources génétiques. La mise en œuvre nationale de ces deux systèmes s'est révélée relativement lente. Ce retard est notamment dû au fait que dans de nombreux pays les décideurs nationaux ne savent pas vraiment comment gérer l'interface entre ces deux systèmes d'accès et de partage des avantages. Sur la base des recherches et des expériences en matière d’élaboration des politiques conduites dans plusieurs pays, les auteurs identifient en premier lieu les questions que les décideurs politiques nationaux doivent aborder et les étapes qu’ils doivent suivre pour la mise en œuvre du Système multilatéral d'accès et de partage des avantages du TIRPAA. En second lieu, les auteurs analysent les points d'intersection, au niveau national, entre le Système multilatéral d'accès et de partage des avantages du TIRPAA et les mécanismes mis en place (ou qui sont actuellement élaborés) en application de la CDB et de son Protocole de Nagoya, récemment adopté. En troisième lieu, les auteurs analysent les facteurs qui contribuent dans de nombreux pays à un manque de coordination entre les institutions publiques nationales chargées de l’environnement et celles chargées de l’agriculture qui ont pour mandat de diriger la mise en œuvre nationale de ces accords internationaux
Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit
Carbon neutral policy in action: the case of Bhutan
Climate policy across the world is proceeding at a highly variable pace, with some places very committed to decarbonizing their economies and others just beginning. Emerging nations are generally just starting along this journey. However, among the few nation states that have pledged to achieve carbon neutrality, is Bhutan, a least developed country. Carbon neutrality is an ambitious climate policy that is increasingly being recognized as necessary in order to stabilize global temperature rise at 1.5°C. However, Bhutan is likely to face significant challenges in maintaining this status as the country balances its desire to grow in economic opportunities (GDP) and in human happiness (GNH). Little research has been conducted inside the policy processes to better understand how Bhutan will maintain carbon neutrality. Through open-ended, semi-structured interviews with key stakeholders, this study provides an inside view on the current situation and future challenges that Bhutan may face, along with the complexities associated with implementing and maintaining an ambitious carbon neutral policy. The paper highlights Bhutan's story and how it could be useful for policy learning and knowledge sharing, especially in the context of emerging nations’ climate governance
- …