13 research outputs found

    Radiation hard 3D silicon pixel sensors for use in the ATLAS detector at the HL-LHC

    Get PDF
    The High Luminosity LHC (HL-LHC) upgrade requires the planned Inner Tracker (ITk) of the ATLAS detector to tolerate extremely high radiation doses. Specifically, the innermost parts of the pixel system will have to withstand radiation fluences above 1 × 1016 neqcm-2. Novel 3D silicon pixel sensors offer a superior radiation tolerance compared to conventional planar pixel sensors, and are thus excellent candidates for the innermost parts of the ITk. This paper presents studies of 3D pixel sensors with pixel size 50 × 50 μm2 mounted on the RD53A prototype readout chip. Following a description of the design and fabrication steps, Test Beam results are presented for unirradiated as well as heavily irradiated sensors. For particles passing at perpendicular incidence, it is shown that average efficiencies above 96% are reached for sensors exposed to fluences of 1 × 1016 neqcm-2 when biased to 80 V.publishedVersio

    Novel 3D Pixel Sensors for the Upgrade of the ATLAS Inner Tracker

    Get PDF
    The ATLAS experiment will undergo a full replacement of its inner detector to face the challenges posed by the High Luminosity upgrade of the Large Hadron Collider (HL-LHC). The new Inner Tracker (ITk) will have to deal with extreme particle fluences. Due to its superior radiation hardness the 3D silicon sensor technology has been chosen to instrument the innermost pixel layer of ITk, which is the most exposed to radiation damage. Three foundries (CNM, FBK, and SINTEF), have developed and fabricated novel 3D pixel sensors to meet the specifications of the new ITk pixel detector. These are produced in a single-side technology on either Silicon On Insulator (SOI) or Silicon on Silicon (Si-on-Si) bonded wafers by etching both n- and p-type columns from the same side. With respect to previous generations of 3D sensors they feature thinner active substrates and smaller pixel cells of 50 × 50 and 25 × 100 µm2. This paper reviews the main design and technological issues of these novel 3D sensors, and presents their characterization before and after exposure to large radiation doses close to the one expected for the innermost layer of ITk. The performance of pixel modules, where the sensors are interconnected to the recently developed RD53A chip prototype for HL-LHC, has been investigated in the laboratory and at beam tests. The results of these measurements demonstrate the excellent radiation hardness of this new generation of 3D pixel sensors that enabled the project to proceed with the pre-production for the ITk tracker.publishedVersio

    Production and integration of the ATLAS Insertable B-Layer

    Get PDF
    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.acceptedVersio

    A 2D pixel detector for very high-rate X- and gamma-ray spectroscopy and imaging

    No full text
    A new methodology for very high-speed, energy-dispersive detection of X-ray fluorescence is being developed. The underlying reasoning behind it, as well as early results from the evaluation of the first prototype, is presented

    Production and integration of the ATLAS Insertable B-Layer

    Get PDF
    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector

    Beam tests of silicon pixel 3D-sensors developed at SINTEF

    Get PDF
    For the purpose of withstanding very high radiation doses, silicon pixel sensors with a ‘3D’ electrode geometry are being developed. Detectors of this kind are highly interesting for harch radiation environments such as expected in the High Luminosity LHC, but also for space physics and medical applications. In this paper, prototype sensors developed at SINTEF are presented and results from tests in a pion beam at CERN are given. These tests show that these 3D sensors perform as expected with full efficiency at bias voltages between 5 and 15VBeam tests of silicon pixel 3D-sensors developed at SINTEFacceptedVersionpublishedVersio

    COMPET: High resolution high sensitivity MRI compatible pre-clinical PET scanner

    No full text
    COMPET is a pre-clinical MRI compatible PET scanner which decouples sensitivity and resolution by the use of a novel detector design. The detector has been built using 8 x 8 cm(2) square layers consisting of 30 LYSO crystals (2 x 3 x 80 mm(2)) interleaved with 24 Wavelength Shifting Fibers (WLS) (3 x 1 x 80 mm(3)). By stacking several layers into a module, the point-of-interaction (POI) can be measured in 3D. Four layers form a PET ring where the sensitivity can be increased by stacking several layers. The layers can be stacked so that no inter-crystal or inter-module gap is formed. COMPET has used four assembled layers for module and scanner characterization. The modules are connected to the COMPET data-acquisition chain and the reconstructed images are produced with the novel geometry-independent COMPET image reconstruction algorithm. Time and energy resolution have been resolved and found to be around 4 as and 14% respectively. Tests for MRI interference and count rate performance have been carried out The reconstruction algorithm has been verified with data acquired by means of a COMPET full ring PET scanner

    Radiation Hard 3D Silicon Pixel Sensors for use in the ATLAS Detector at the HL-LHC

    Get PDF
    The High Luminosity LHC (HL-LHC) upgrade requires the planned Inner Tracker (ITk) of the ATLAS detector to tolerate extremely high radiation doses. Specifically, the innermost parts of the pixel system will have to withstand radiation fluences above 1×10161\times10^{16}neqcm2n_{eq}cm^{-2}. Novel 3D silicon pixel sensors offer a superior radiation tolerance compared to conventional planar pixel sensors, and are thus excellent candidates for the innermost parts of the ITk. This paper presents studies of 3D pixel sensors with pixel size 50×5050 \times 50μm2\mu m^2 mounted on the RD53A prototype readout chip. Following a description of the design and fabrication steps, Test Beam results are presented for unirradiated as well as heavily irradiated sensors. For particles passing at perpendicular incidence, it is shown that average efficiencies above 96% are reached for sensors exposed to fluences of 1×10161\times10^{16} neqcm2n_{eq}cm^{-2} when biased to 80 VV

    Radiation hard 3D silicon pixel sensors for use in the ATLAS detector at the HL-LHC

    No full text
    The High Luminosity LHC (HL-LHC) upgrade requires the planned Inner Tracker (ITk) of the ATLAS detector to tolerate extremely high radiation doses. Specifically, the innermost parts of the pixel system will have to withstand radiation fluences above 1 × 1016 neqcm-2. Novel 3D silicon pixel sensors offer a superior radiation tolerance compared to conventional planar pixel sensors, and are thus excellent candidates for the innermost parts of the ITk. This paper presents studies of 3D pixel sensors with pixel size 50 × 50 μm2 mounted on the RD53A prototype readout chip. Following a description of the design and fabrication steps, Test Beam results are presented for unirradiated as well as heavily irradiated sensors. For particles passing at perpendicular incidence, it is shown that average efficiencies above 96% are reached for sensors exposed to fluences of 1 × 1016 neqcm-2 when biased to 80 V.publishedVersio

    Test Beam Results of SINTEF 3D Pixel Silicon Sensorsb

    No full text
    This paper presents test beam results of SINTEF 3D pixel sensors designed for the Inner Tracker (ITk) of the ATLAS detector at the High Luminosity LHC (HL-LHC). The sensors are required to withstand extreme radiation doses and to maintain efficiency above 96-97% after a lifetime operation at the ITk. We present details on the production and design of these sensors, the setup for the experiment at CERN, and the analysis of the test beam data. Results are promising, showing excellent position resolution and high efficiencies after irradiation. The sensors meet the operational efficiency targets for both perpendicular and tilted configurations, validating their design and performance for future HL-LHC operations
    corecore