753 research outputs found

    New World of Gossamer Superconductivity

    Full text link
    Since the discovery of the high-Tc_{c} cuprate superconductor La2x_{2-x}BaCuO4_{4} in 1986 by Bednorz and M\"{u}ller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a)the pseudogap phase is d-wave density wave (dDW) and that the high-Tc_{c} cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW).Comment: 6 pages, 4 figure

    Aspects of unconventional density waves

    Full text link
    Recently many people discuss unconventional density waves (i.e. unconventional charge density waves (UCDW) and unconventional spin density waves (USDW)). Unlike in conventional density waves, the quasiparticle spectrum in these systems is gapless. Also these systems remain metallic. Indeed it appears that there are many candidates for UDW. The low temperature phase of alpha-(BEDT-TTF)_2KHg(SCN)_4, the antiferromagnetic phase in URu_2Si_2, the CDW in transition metal dichalcogenite NbSe_2, the pseudogap phase in high T_c cuprate superconductors, the glassy phase in organic superconductor kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br. After a brief introduction on UCDW and USDW, we shall discuss some of the above systems, where we believe we have evidence for unconventional density waves.Comment: 11 pages, 5 figure

    Unconventional spin density wave in (TMTSF)2PF6 below T* ~ 4K

    Get PDF
    The presence of subphases in spin-density wave (SDW) phase of (TMTSF)2PF6 below T* ~ 4K has been suggested by several experiments but the nature of the new phase is still controversial. We have investigated the temperature dependence of the angular dependence of the magnetoresistance in the SDW phase which shows different features for temperatures above and below T*. For T > 4K the magnetoresistance can be understood in terms of the Landau quantization of the quasiparticle spectrum in a magnetic field, where the imperfect nesting plays the crucial role. We propose that below T* ~ 4K the new unconventional SDW (USDW) appears modifying dramatically the quasiparticle spectrum. Unlike conventional SDW the order parameter of USDW depends on the quasiparticle momentum. The present model describes many features of the angular dependence of magnetoresistance reasonably well. Therefore, we may conclude that the subphase in (TMTSF)2PF6 below T* ~ 4K is described as SDW plus USDW.Comment: 7 pages, 9 figures, RevTeX4; misprint corrected, references updated, a few sentences adde

    Orbital quantization in the high magnetic field state of a charge-density-wave system

    Full text link
    A superposition of the Pauli and orbital coupling of a high magnetic field to charge carriers in a charge-density-wave (CDW) system is proposed to give rise to transitions between subphases with quantized values of the CDW wavevector. By contrast to the purely orbital field-induced density-wave effects which require a strongly imperfect nesting of the Fermi surface, the new transitions can occur even if the Fermi surface is well nested at zero field. We suggest that such transitions are observed in the organic metal α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 under a strongly tilted magnetic field.Comment: 14 pages including 4 figure

    Quenching through Dirac and semi-Dirac points in optical Lattices: Kibble-Zurek scaling for anisotropic Quantum-Critical systems

    Full text link
    We propose that Kibble-Zurek scaling can be studied in optical lattices by creating geometries that support, Dirac, Semi-Dirac and Quadratic Band Crossings. On a Honeycomb lattice with fermions, as a staggered on-site potential is varied through zero, the system crosses the gapless Dirac points, and we show that the density of defects created scales as 1/τ1/\tau, where τ\tau is the inverse rate of change of the potential, in agreement with the Kibble-Zurek relation. We generalize the result for a passage through a semi-Dirac point in dd dimensions, in which spectrum is linear in mm parallel directions and quadratic in rest of the perpendicular (dm)(d-m) directions. We find that the defect density is given by 1/τmνz+(dm)νz 1 /{\tau^{m\nu_{||}z_{||}+(d-m)\nu_{\perp}z_{\perp}}} where ν,z\nu_{||}, z_{||} and ν,z\nu_{\perp},z_{\perp} are the dynamical exponents and the correlation length exponents along the parallel and perpendicular directions, respectively. The scaling relations are also generalized to the case of non-linear quenching

    Electron-phonon interaction in a local region

    Full text link
    The paper reports on a study of electron-phonon interaction within a limited nanosized region. We invoked the modified Fr\"{o}hlich's Hamiltonian to calculate the electron self-energy, as well as the elastic and inelastic scattering cross sections. New effects have been revealed, more specifically: a bound state forms within the limited nanosized region, electrons undergo resonant elastic scattering, with strong inelastic scattering being possible from this state even at low electron energies. The effect of scattering on the magnetic-field-independent dephasing time, in particular, in a diamond-decorated carbon nanotube, has been determined. The effect of strong inelastic electron scattering on thermal resistance at the metal-insulator interface is discussed.Comment: 13 pages, 2 figure

    Biocomposite from polylactic acid and lignocellulosic fibers: structure-property correlations

    Get PDF
    ABSTRACT PLA biocomposites were prepared using three corncob fractions and a wood fiber as reference. The composites were characterized by tensile testing, scanning electron (SEM) and polarization optical (POM) microscopy. Micromechanical deformation processes were followed by acoustic emission measurements. The different strength of the components was proved by direct measurements. Two consecutive micromechanical deformation processes were detected in composites containing the heavy fraction of corncob, which were assigned to the fracture of soft and hard particles, respectively. The fracture of soft particles does not result in the failure of the composites that is initi-ated either by the fracture of hard particles or by matrix cracking. Very large particles debond easily from the matrix resulting in catastrophic failure at very low stresses. At sufficiently large shear stresses large particles break easily during compounding, thus reinforcement depending on interfacial adhesion was practically the same in all composites irrespectively of initial fiber characteristics
    corecore