48 research outputs found
On the Influence of Eccentricities on Flux Linkages of Permanent Magnet Synchronous Machines
The noise behavior of electrical machines is influenced by tolerances. Eccentricities in particular lead to poorer noise behavior. However, the measurement of NVH quantities is usually very complex. Therefore, it is of interest to be able to detect such tolerances also by other measurands. In this paper, the influence of eccentricities on the flux linkages is investigated. For this purpose, detailed investigations were carried out using FEA. In a further step, these are compared with the results obtained from a test rig measurement. Prior to this, a methodology is presented with which the angle-dependent flux linkages can be determined. It is shown that eccentricities cause only slight changes in the harmonic components of the flux linkages. Due to the symmetry properties of the investigated machine, the changes in the flux linkage caused by the different air gap lengths cancel each other out. This could also be confirmed in the experiment
Comparative Concept Study of Passive Hybrid Energy Storage Systems in 48 V Mild Hybrid Vehicles
A single energy storage technology will deliver either high power or high energy density. In high cycle applications like 48 V mild hybrid electric vehicles, lithium-ion batteries or supercapacitors have to be oversized to meet power, energy and cycle life requirements. However, a passive hybrid energy storage system is able to meet those challenges, but its performance depends on several factors. In this study, simulations and experimental investigations show how the design and operation conditions influence the performance of a passive hybridized system. In a comparative study for 48 V systems, consequences on performance are discussed
Determination and emulation of motor-like flux conditions for loss characterization by means of a single tooth geometry
High quantities and a demand on low costs in automotive drives result in new production methods of electrical machines. Besides, the electric drive train efficiency is improved to offer long ranges. Referring to this relationship the loss models of electrical machines are improved more and more. Focusing on iron losses, remarkable influences on the loss characteristics are attributed to the manufacturing processes. In this publication, a new approach of measuring the losses of a single stator tooth of an electrical machine considering motor-like flux conditions is introduced. Derivation of motor-like flux conditions is described, transfer to the test bench is defined and measurements are shown - concluding with a comparison of simulation and measurement as well as the identified tooth losses of the investigated machine. This gives the possibility to improve iron loss models in case of additional losses due to manufacturing influences
Hyperfine resolved optical spectroscopy of the A<sup>2</sup>Î âX<sup>2</sup>ÎŁ<sup>+</sup> transition in MgF
We report on hyperfine-resolved laser spectroscopy of the A2Î âX2ÎŁ+ transition of MgF, relevant for laser cooling. We recorded 25 rotational transitions with an absolute accuracy of better than 20 MHz, assigned 56 hyperfine lines and determined precise rotational, fine and hyperfine structure parameters for the A2Î state. The radiative lifetime of the A2Î state was determined to be 7.2(3) ns, in good agreement with \textit{ab initio} calculations. The transition isotope shift between bosonic isotopologues of the molecule is recorded and compared to predicted values within the Born-Oppenheimer approximation. We measured the Stark effect of selected rotational lines of the A2Î âX2ÎŁ+ transition by applying electric fields of up to 10.6 kV cm-1 and determined the permanent electric dipole moments of 24MgF in its ground X2ÎŁ+ and first excited A2Î states to be ÎŒX=2.88(20) D and ÎŒA=3.20(22) D, respectively. Based on these measurements, we caution for potential losses from the optical cycling transition, due to electric field induced parity mixing in the excited state. In order to scatter 104 photons, the electric field must be controlled to below 1 V cm-1
Cryogenic Buffer Gas beams of AlF, CaF, MgF, YbF, Al, Ca, Yb and NO -- a comparison
Cryogenic buffer gas beams are central to many cold molecule experiments. Here, we use absorption and fluorescence spectroscopy to directly compare molecular beams of AlF, CaF, MgF, and YbF molecules, produced by chemical reaction of laser ablated atoms with fluorine rich reagents. The beam brightness for AlF is measured as 2 X 1012 molecules per steradian per pulse in a single rotational state, comparable to an Al atomic beam produced in the same setup. The CaF, MgF and YbF beams show an order of magnitude lower brightness than AlF, and far below the brightness of Ca and Yb beams. The addition of either NF3 or SF6 to the cell extinguishes the Al atomic beam, but has a minimal effect on the Ca and Yb beams. NF3 reacts more efficiently than SF6, as a significantly lower flow rate is required to maximise the molecule production, which is particularly beneficial for long-term stability of the AlF beam. We use NO as a proxy for the reactant gas as it can be optically detected. We demonstrate that a cold, rotationally pure NO beam can be generated by laser desorption, thereby gaining insight into the dynamics of the reactant gas inside the buffer gas cell
The chemistry of AlF and CaF production in buffer gas sources
In this work, we explore the role of chemical reactions on the properties of buffer gas cooled molecular beams. In particular, we focus on scenarios relevant to the formation of AlF and CaF via chemical reactions between the Ca and Al atoms ablated from a solid target in an atmosphere of a fluorine-containing gas, in this case, SF6 and NF3. Reactions are studied following an ab initio molecular dynamics approach, and the results are rationalized following a tree-shaped reaction model based on Bayesian inference. We find that NF3 reacts more efficiently with hot metal atoms to form monofluoride molecules than SF6. In addition, when using NF3, the reaction products have lower kinetic energy, requiring fewer collisions to thermalize with the cryogenic helium. Furthermore, we find that the reaction probability for AlF formation is much higher than for CaF across a broad range of kinetic temperatures