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Abstract—The major limitation of the lifetime and reliability
of electrical machines are stator winding faults. Inter-turn faults
are for that matter often the origin of more severe faults,
which can lead to complete system failures. Particularly, three-
phase permanent magnet synchronous machines (PMSMs) have
significant drawbacks in terms of fault tolerant operation. In
comparison, six-phase PMSMs are more complex to analyze and
to operate, but for this reason, also offer greater possibilities
for the control scheme during fault. This paper presents the
first analytical machine model to investigate the behavior of
six-phase PMSMs with stator winding faults on turn level. In
order to keep the model compact, the levels of abstraction vary
within the stator winding circuit. The machine model is acausally
implemented, which allows the simulation with current sources
and current controlled voltage sources. The simulation results of
the presented model are compared with the simulation results of
an equivalent finite element analysis model. The average torque
differs between the two models in case of an inter-turn fault
at nominal load operation by 0.3 %, the amplitude of the fault
current differs by 3.3 % and the frequency spectra of the voltages
show equal characteristics, while the computation time is 200
times faster with the analytical model. We use the developed
model for the analysis of the machine behavior under stator
winding faults relevant in practice. With the machine analysis’s
outcome, we are able to develop a more sophisticated fault
management system, which enhances fault tolerant operation in
comparison with three-phase PMSMs.

Index Terms—stator winding faults, six-phase, inter-turn

faults, PMSM, acausal implementation, analytical model

I. INTRODUCTION

Fault tolerant propulsion systems are necessary for upcom-

ing topics in safety critical applications, like all-electric aircraft

[1]. These systems can still operate under faulty conditions

with reduced or even full power. A fault management system

(FMS) is required to enable fault tolerant operation [2]. An

inter-turn fault is most commonly the initial fault in the stator

winding of an electrical machine [3]. The FMS must be able

to detect these minor faults in an early stage and must adopt

the control strategy in order to maintain safe operation [4].

Otherwise, the inter-turn fault propagates to more serious

faults, which can have a severe impact on safety critical

applications. Therefore, the FMS requires detailed knowledge

of the electrical machine under healthy and faulty conditions.

Multiphase machines inherently feature an increased fault

tolerance compared with conventional three-phase systems

[5]. For that matter, six-phase systems are practical to use

because they can be built with two three-phase systems.

There exist several methods of analytical modeling of inter-

turn faults for three-phase permanent magnet synchronous

machines (PMSMs) with surface mounted magnets [6], [7]. We

propose in [8] an analytical model for an acausal simulation

of stator winding faults of PMSMs with surface mounted or

buried magnets. There is only one approach for six-phase inter-

turn fault modeling for induction machines [9] and none fore

six-phase PMSMs. This paper presents the first approach to

simulate user-defined stator winding faults on turn level of

PMSMs with rotor position dependent inductance.

II. MODELING

There are several descriptions in literature of multiphase ma-

chines. Electrical machines can be classified by their number

of phases and their phase belt angle β. In this paper, we focus

on six-phase machines with a phase belt angle of β = 30
electrical degrees, which is called ”semi 12-phase” in [10].

The same type of winding is called ”duplex” winding in [11]

since it can be built by a duplicated three-phase machine. One

set of three-phase winding with a phase belt angle of β = 60
electrical degrees is divided into two sets of three-phase

windings with a phase belt angle of β = 30 electrical degrees

each. The two sets of windings are displaced by an angle

of 30 electrical degrees. Fig. 1 shows the phase arrangement

of the analyzed six-phase machine. Therein γ1 denotes the

rotor angle in reference to phase Ph1 and γ2 denotes the rotor

angle in reference to phase Ph4. Phases Ph1, Ph2, and Ph3 are

part of the first three-phase system and phases Ph4, Ph5, and

Ph6 of the second three-phase system. Fig. 2 shows the cross

section of the analyzed six-phase machine. The color of the

slots matches the corresponding three-phase system of Fig.1.

A. Assumptions

The following assumptions are used to model the machine.

The stator winding consists of six distributed, symmetric

and full-pitched phases. The six phases are divided into two

star-connected three-phase systems, which are shifted by 30
electrical degrees. The star points of the two three-phase

systems are not connected to each other and are not attached

to the converter. The number of pole pairs is two, the number
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Fig. 1. Phase arrangement of the stator winding.

of slots per pole per phase is one, the number of parallel paths

is one and the number of turns per coil is 23. The permeability

of the iron approaches infinity, the magnetic circuit is linear

and there exists no magnetic coupling among different pole

pairs. We only regard the fundamental wave in the air gap

and we neglect the stator winding end effects. Furthermore, we

neglect friction loss, iron loss, dielectric currents, skin effects

and proximity effects. We assume that the inductances and the

flux linkage are given in the dq-reference frame. These values

can be obtained by either measurement, theoretical calculation,

finite element analysis (FEA) simulation or the data sheet of

the machine.

B. Healthy Machine

The stationary voltage equation of the duplex machine is

given in the dq-reference frame by [11]:

vd1 = RPh · id1 − ω (Lq1 · iq1 +Mq1q2 · iq2) (1)

vq1 = RPh · iq1 + ω (Ld1 · id1 +Md1d2 · id2 +ΨPM1) (2)

vd2 = RPh · id2 − ω (Lq2 · iq2 +Mq2q1 · iq1) (3)

vq2 = RPh · iq2 + ω (Ld2 · id2 +Md2d1 · id1 +ΨPM2) (4)

Therein vd1 and vq1 denote the voltage in d- and q-axis of the

first and vd2 and vq2 of the second three-phase system. Ld1

and Lq1 denote the inductances in d- and q-axis of the first and

Ld2 and Lq2 of the second three-phase system. Md1d2, Md2d1,

Mq1q2 and Mq2q1 denote the mutual inductances among the

two systems. The permanent magnet flux linkage of the rotor

is denoted by ΨPM1 and ΨPM2 for the first and second three-

phase system, respectively. The ohmic phase resistance is

denoted by RPh and the angular velocity is denoted by ω.

The voltage equations (1)-(4) can be summarized to a vectorial

representation:

vdq = RPh · idq + ω (Ldq · idq +ΨPM,dq) (5)

Therein vdq (4 × 1) denotes the vector of the dq-voltages,

RPh (4×4) denotes the matrix of the ohmic phase resistances,

idq (4× 1) denotes the vector of the dq-currents, Ldq (4× 4)
denotes the dq-inductances and ΨPM,dq (4×1) denotes the dq-

permanent magnet flux linkages. The transformation matrices

Fig. 2. Cross section of the analyzed PMSM.

T 1 and T 2 are used to transform the voltage equations of the

rotating reference frame into the stationary reference frame.

The general transformation matrix T is given by:

T =
2

3

(

cos(γ) cos(γ − 2π/3) cos(γ + 2π/3)
-sin(γ) -sin(γ − 2π/3) -sin(γ + 2π/3)

)

(6)

The matrices T 1 and T 2 use γ1 and γ2 as transformation

angle. The phase inductance matrix LPh (6× 6) is calculated

by:

LPh =

(

T 1Ldq,1T
−1
1 T 1M12T

−1
2

T 2M21T
−1
1 T 2Ldq,2T

−1
2

)

(7)

In this equation the indexes 1 and 2 refer to the first and

second three-phase system, respectively. The voltage equation

of the synchronous machine in the stationary reference frame

is given by:

vPh = RPh · iPh +
d

dt
(LPh · iPh +ΨPM,Ph) (8)

Therein vPh (6 × 1) denotes the phase voltage vector, iPh

(6× 1) denotes the phase current vector and ΨPM,Ph (6× 1)
denotes the vector of the phase permanent magnet flux link-

age. These values are calculated by using the transformation

matrices T 1 and T 2, similarly to (7).

C. Faulty Machine

Inter-turn faults most likely occur at the first turns of a

coil, because of the increased voltage stress in adjustable-

speed drive systems [12]. We model the PMSM on turn level

in the faulty machine part, to enable the simulation of inter-

turn faults. The healthy machine part can be reduced to a

more abstract level in order to have a compact model. Thus,

the machine model contains two levels of abstraction. For the

first level, the phase inductance is separated into the phase

inductance per pole, P1 and P2. For the second level, the phase

inductance of pole P1 is further separated into the faulty parts

F1 and F2. The sum of the turns from part F1 and F2 must

equal the original number of turns from one pole. The resulting

model of the stator winding circuit is shown in Fig. 3. The
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Fig. 3. Implemented electric circuit of the machine model.

voltage equation for the stator winding of the fault model is

given by:

vFM = RFM · iFM +
d

dt
(LFM · iFM +ΨPM,FM) (9)

Therein the vector vFM (18× 1) contains the voltage of each

component, the matrix RFM (18 × 18) contains the ohmic

resistance of each component, the vector iFM (18×1) contains

the current through each component, the matrix LFM (18×18)
contains the inductive coupling among all components and

the vector ΨPM,FM (18 × 1) contains the permanent magnet

flux linkage of each component. We use the phase model to

calculate the resistance matrix, the inductance matrix and the

permanent magnet flux linkage vector of the fault model. For

the derivation, we use the voltage equation of each phase. As

shown in Fig. 3, the phase voltage equation for phase Phi,
i ∈ {1, 2, ..., 6} is given by:

vPhi = RPh · iPhi +
d

dt
ΨPhi (10)

= vPhiF1P1 + vPhiF2P1 + vPhiP2 (11)

Due to this information, we can calculate RFM, LFM and

ΨPM,FM using RPh, LPh and ΨPM,Ph, respectively. The

individual values are calculated by:

RPhi(Fj)Pk = RPhi

wPhi(Fj)Pk

wPhi
(12)

ΨPM,Phi(Fj)Pk = ΨPM,Phi

wPhi(Fj)Pk

wPhi
(13)

LPhi(Fj)Pk,Phm(Fn)Po = LPhi,Phm

wPhi(Fj)PkwPhm(Fn)Po

wPhiwPhm
(14)

Therein every component can be addressed individually with

i,m ∈ {1, 2, ..., 6} and j, k, n, o ∈ {1, 2}. The power equation

is derived by multiplying the voltage equation (9) with the

transposed current vector iTFM:

i
T
FM · vFM = i

T
FM ·RFM · iFM + i

T
FM ·

d

dt
ΨFM (15)

Pel = Ploss +
dWmag

dt
+ Pmech (16)

The electric power Pel separates into the power loss Ploss,

the derivative of the stored magnetic energy
dWmag

dt and the

inner mechanical power Pmech. In a machine with a symmetric

matrix of the phase inductance, the average change of stored

magnetic energy is zero over time and can be neglected [11].

Thus, the equation for the electromagnetic torque Tel can

be derived from Pmech, wherein Ω denotes the mechanical

angular velocity of the rotor:

Tel =
1

Ω
· Pmech =

1

Ω
· iTFM ·

d

dt
ΨFM (17)

III. IMPLEMENTATION

The implementation of machine models can be divided into

causal and acausal approaches [13]. Causally implemented

machine models offer reduced simulation time compared with

acausally implemented models. The disadvantage of a causal

implementation is the predefined information flow. This means

that the specification of the input and output ports of the

machine model cannot be changed once the model is imple-

mented. Causally implemented machine models mainly use a

voltage source as input [14], [15]. This allows the simulation

of propulsion systems with current controlled voltage source

inverters (VSIs). For the analysis of the machine behavior

under faulty conditions, we first simulate the machine model

without interference of a current controller. Therefore, we use

current sources to set a desired torque according to (17). In a

second step, we will analyze the machine behavior under faulty

conditions, with the interference of a current controlled VSI.

This means we need an acausally implemented machine model

with a nondirectional information flow. With this approach,

we can either use a current source or a voltage source for the

analysis of the machine. We used the MATLAB® Simscape™

environment to implement the analytical model of the six-

phase PMSM. To ensure the nondirectional information flow,

the electrical domain is implemented with differential equa-

tions. Each component of the stator winding is modeled by a

customized component and the connection of all components

forms the stator winding of Fig. 3. The implementation of

such a component, which includes the corresponding voltage

equation of (9), is shown in Fig. 4. By adding short circuit

paths to the stator winding, we can simulate inter-turn faults,

phase-to-phase faults or phase-to-ground faults. Furthermore,

we can simulate open circuit faults by adding an open circuit

to the stator winding. Fig. 5 shows an added short circuit path

in phase Ph1 for the simulation of an inter-turn fault with

variable number of turns wPh1F1P1.

γ1

online

calculation

vx = Rx·ix + dΨx/dt 

Ψx vx ix

ix

vx

iFM

γ2

Fig. 4. Implemented customized component of an inductance.
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Fig. 5. Implemented inter-turn fault by adding a short circuit path.

IV. FINITE ELEMENT ANALYSIS

We use a 2D FEA simulation in this paper to compare the

simulation results of the analytical model. We perform the

FEA simulation with the software Flux™ from Altair®. The

cross section of the analyzed six-phase PMSM with buried

magnets is shown in Fig. 2. The electric circuits of both

models are equal. In contrast to the analytical model, the FEA

model considers the nonlinear magnetic circuit of the machine.

We also use the FEA model to determine the flux linkages

ΨPM1 and ΨPM2, the self-inductances Ld1, Lq1, Ld2 and

Lq2 and the mutual inductances Md1d2, Md2d1, Mq1q2 and

Mq2q1 of the healthy machine by linearization at the nominal

operating point. The machine parameters are summarized in

Table I. The self-inductances Ld1 and Ld2 and the mutual

inductances Md1d2 and Md2d1 are equal because there is

no displacement angle among the d1- and d2-axes according

to Fig. 1. For the same reason, the self-inductances and the

mutual inductances of the q1- and q2-axes are equal. There is

no magnetic coupling among the d- and q-axes, because the

displacement angle is 90 electrical degrees.

V. RESULTS

The simulation results of the analytical and FEA model are

presented and compared for four different operating scenarios,

as shown in Table II. In case of no load operation, the phase

currents are equal to zero. The nominal load operation is de-

fined by the Maximum Torque per Ampere (MTPA) approach.

The nominal MTPA point for the presented PMSM is defined

by the current amplitude |idq| = 10A and the current angle

θ = 8 electrical degrees, which equals iq1 = iq2 = 9.9A and

id1 = id2 = -1.4A. The increased speed scenario is used

to analyze the impact of an increased induced voltage by the

permanent magnets and the impact of an increased electrical

frequency. We use the increased load operation to analyze

TABLE I
MACHINE PARAMETERS

parameters values

self-inductances Ld1, Ld2 0.697mH

self-inductances Lq1, Lq2 2.1mH

mutual inductances Md1d2, Md2d1 0.697mH

mutual inductances Mq1q2, Mq2q1 2.1mH

permanent magnet flux linkages ΨPM1, ΨPM2 148mVs

ohmic phase resistance RPh 10mΩ

nominal torque Tel 6.4Nm

TABLE II
SIMULATION SCENARIOS

scenario current amplitude current angle speed

no load 0A 0 degrees 5000 rpm

nominal load 10A 8 degrees 5000 rpm

increased load 14A 8 degrees 5000 rpm

increased speed 10A 8 degrees 7500 rpm

the effect of the neglected nonlinear magnetic circuit of the

analytical model. The machine parameters are the same for

all scenarios. A current source is used for both models to set

the different operating scenarios. In the following subsections,

the simulation results for an inter-turn fault with two shorted

turns wPh1F1P1 = 2 in phase Ph1 with a fault resistance

RF = 40mΩ are presented.

A. Voltages

Fig. 6 shows the simulation results of the voltages vd1, vq1,

vd2 and vq2 of the FEA model for the operation with increased

speed. For this operating scenario, the machine behavior

differs the most in comparison to the healthy machine. The

effect of the inter-turn fault on the harmonic characteristics

of the voltages vd1 and vq1 is similar to the effect on the

voltages vd2 and vq2. Therefore, we use in this paper only the

simulation results of the voltages vd1 and vq1 to compare both

models. The simulation results of the dq-voltages for the first

three-phase system are shown in Fig. 7. Due to the inter-turn

fault, there are second and fourth harmonics in the voltages.

The amplitudes and phase angles of the second harmonics
2vq1 and 2vq2 are the most relevant fault characteristics,

because their amplitudes are significantly larger then than the

amplitudes of 2vd1, 2vd2 and the amplitudes of the fourth

harmonics. Table III summarizes the average voltages vq1 and

the amplitudes of the second harmonics 2vq1. The minimum

deviation between the FEA and analytical model occurs in case

of nominal load operation. In this scenario, the average voltage

vq1 of the analytical model differs by 0.1% in comparison to

the FEA Model. The maximum deviation occurs in case of

increased load operation. The second harmonic 2vq1 of the

analytical model differs, in this case by 7.5%. The average

voltage vq1 at nominal load operation is reduced compared

Fig. 6. Operation with increased speed:
∣

∣idq

∣

∣ = 10A, n = 7500 rpm



(a) Operation at no load:
∣

∣idq

∣

∣ = 0A, n = 5000 rpm

(b) Operation at nominal load:
∣

∣idq

∣

∣ = 10A, n = 5000 rpm

(c) Operation with increased load:
∣

∣idq

∣

∣ = 14A, n = 5000 rpm

(d) Operation with increased speed:
∣

∣idq

∣

∣ = 10A, n = 7500 rpm

Fig. 7. Simulation results of the voltages for the analytical and FEA model
with an inter-turn fault in phase Ph1.

to the no load operation because of the negative currents id1
and id2 according to (2). For the increased load scenario, the

average voltage vq1 decreases further. The amplitude of the

fundamental component of the phase voltage 1vPh increases

from 110V at no load operation, to 114.8V at nominal

load operation, to 121.3V at increased load operation and

TABLE III
COMPARISON OF THE VOLTAGES

FEA analytic

vq1
2
vq1 vq1

2
vq1

no load 111.8V 5.9V 109.3V 6.1V

nominal load 108.3V 6.2V 108.2V 6.4V

increased load 105.4V 6.2V 107.8V 6.7V

increased speed 161.9V 13.2V 162.6V 13.8V

to 171.3V at operation with increased speed. The amplitude

of the second harmonic 2vq1 increases proportionally to the

phase voltage 1vPh, for constant speed. For the increased speed

scenario, the amplitude of the second harmonic increases by

116%, whereas the average voltage vq1 increases only by

50%. The reason for this is the increased impedance of the

inter-turn circuit, due to the increased electrical frequency.

B. Fault Current

The simulation results of the fault current for the different

scenarios are shown in Fig. 8. The inter-turn fault causes

a fault current which consists primarily of the fundamental

component 1iF. Table IV summarizes the simulation results

of the fault current for the FEA and the analytical model.

The minimum deviation of the FEA and analytical model

occurs in case of no load operation. The fault current 1iF
of the analytical model differs in this case by 0.3% in

comparison to the FEA model. The maximum deviation occurs

under increased load operation. In this case, the fundamental

components differ by 5.8%. The amplitude of the fault current

is the lowest for the no load operation as the phase voltage
1vPh is also the lowest. In case of operation with increased

speed, the amplitude of the fault current increases by 48%
which is similar to the amplification of the phase voltage 1vPh.

Therefore, the fault current 1iF increases proportionally to the

phase voltage 1vPh.

C. Torque

The simulation results of the electromagnetic torque are

shown in Fig. 9. The inter-turn fault causes a reduction of

the average electromagnetic torque T el and a second harmonic
2Tel. Table V summarizes the simulation results of the torque

for the FEA and the analytical model. There is a very good

accordance of the average torque for the no load, nominal load

and increased speed scenario. The average torque is negative

TABLE IV
COMPARISON OF THE FAULT CURRENT

FEA analytic

1
iF

1
iF

no load 118.9A 118.5A

nominal load 119.3A 123.4A

increased load 122.5A 130.1A

increased speed 172.9A 182.8A



(a) Operation at no load:
∣

∣idq

∣

∣ = 0A, n = 5000 rpm

(b) Operation at nominal load:
∣

∣idq

∣

∣ = 10A, n = 5000 rpm

(c) Operation with increased load:
∣

∣idq

∣

∣ = 14A, n = 5000 rpm

(d) Operation with increased speed:
∣

∣idq

∣

∣ = 10A, n = 7500 rpm

Fig. 8. Simulation results of the fault current for the analytical and FEA
model with an inter-turn fault in phase Ph1.

in case of no load operation which means that the machine

converts mechanical power into heat. In case of nominal load

operation, the average torque T el of the analytical model

is reduced by 7.2%, due to the inter-turn fault. There is a

deviation of 2.1% between the average torque of the FEA

and analytical model, for the operation with increased load.

(a) Operation at no load:
∣

∣idq

∣

∣ = 0A, n = 5000 rpm

(b) Operation at nominal load:
∣

∣idq

∣

∣ = 10A, n = 5000 rpm

(c) Operation with increased load:
∣

∣idq

∣

∣ = 14A, n = 5000 rpm

(d) Operation with increased speed:
∣

∣idq

∣

∣ = 10A, n = 7500 rpm

Fig. 9. Simulation results of the torque for the analytical and FEA model
with an inter-turn fault in phase Ph1.

The reason for this is the neglected nonlinear magnetic circuit

in the analytical model. The minimum deviation of the second

harmonic 2Tel is 2% in case of no load operation. The

maximum deviation of the second harmonic is in case of

increased load operation. The second harmonic 2Tel of the

FEA model is 40% smaller, which means that the nonlinear



TABLE V
COMPARISON OF THE TORQUE

FEA analytic

T el
2
Tel T el

2
Tel

no load -0.51Nm 0.51Nm -0.50Nm 0.50Nm

nominal load 5.92Nm 0.52Nm 5.94Nm 0.71Nm

increased load 8.34Nm 0.54Nm 8.52Nm 0.89Nm

increased speed 5.61Nm 0.73Nm 5.62Nm 0.98Nm

magnetic circuit attenuates the torque ripple. Therefore, the

analytical model provides a worst case estimation. In case of

operation with the increased speed scenario, the amplitude of

the second harmonic 2Tel of the analytical model increases by

38% compared with the nominal load scenario.

VI. CONCLUSION

With the presented model, we enable the simulation of

six-phase PMSMs with stator winding faults on turn level.

The acausal implementation allows an initial analysis of the

faulty machine behavior without interference of a current

controller by using current sources. In this paper, we compare

the accuracy of the analytical model with the FEA model. We

do not concentrate on the characteristics of different stator

winding faults. Therefore, we focus on a detailed analysis of

the dq-voltages of the first three-phase system. The analysis

of the frequency spectra of the voltages shows that an inter-

turn fault causes second and fourth harmonics in the dq-

voltages which mainly depend on the amplitude of the phase

voltage. The amplitudes of the harmonics further depend on

the speed of the rotor, which affects the induced voltage

and the impedance of the short circuit path. The simulation

results show that the fundamental component of the fault

current is proportional to the phase voltage. The analysis of

the fault current is essential to estimate in a next step the

developed heat in the stator winding, and thus, the remaining

lifetime of the machine. The analysis of the electromagnetic

torque shows the stator winding fault effects on the mechanical

side of the propulsion system. The average torque decreases

for increasing fault currents in order to fulfill the overall

power balance. The second harmonic of the torque increases

proportionally to the phase voltage, but there is also a strong

dependency on the phase currents and therefore also on the

magnetic saturation level. There are differences among the

analytical and FEA simulation results which depend on the

operating scenario. The best accordance is achieved for the no

load and nominal load operation, because of the linearity of

the magnetic circuit for small currents. The deviation between

the two models is primarily due to the nonlinear behavior

of the magnetic circuit in the FEA model, which can be

seen at the increased load scenario. Although there is a good

accordance of the results, the accuracy can be improved, by

determining new machine parameters for the operating point

of interest. The main advantage of the analytical model is the

significantly reduced computation time, which is in average

200 times faster. Furthermore, stator winding faults can be

simulated by simply adding short or open circuit paths to

the stator winding circuit of Fig. 3 and different machine

designs can be analyzed, by adapting the machine parameters

of the model. In a next step, we analyze the faulty machine

behavior with the interference of a current controlled VSI,

which is essential for the development of an FMS in safety

critical applications. With the analysis from the pure machine

behavior to the machine behavior with complex time-variant

control parameters, effective control strategies for fault tolerant

operation can be developed. We currently design a test-bench

to validate the analytical and the FEA model.
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