141 research outputs found

    Bacteria solve the problem of crowding by moving slowly

    Get PDF
    Bacteria commonly live attached to surfaces in dense collectives containing billions of cells1. While it is known that motility allows these groups to expand en masse into new territory2,3,4,5, how bacteria collectively move across surfaces under such tightly packed conditions remains poorly understood. Here we combine experiments, cell tracking and individual-based modelling to study the pathogen Pseudomonas aeruginosa as it collectively migrates across surfaces using grappling-hook-like pili3,6,7. We show that the fast-moving cells of a hyperpilated mutant are overtaken and outcompeted by the slower-moving wild type at high cell densities. Using theory developed to study liquid crystals8,9,10,11,12,13, we demonstrate that this effect is mediated by the physics of topological defects, points where cells with different orientations meet one another. Our analyses reveal that when defects with topological charge +1/2 collide with one another, the fast-moving mutant cells rotate to point vertically and become trapped. By moving more slowly, wild-type cells avoid this trapping mechanism and generate collective behaviour that results in faster migration. In this way, the physics of liquid crystals explains how slow bacteria can outcompete faster cells in the race for new territory

    Twist-induced crossover from two-dimensional to three-dimensional turbulence in active nematics

    Get PDF
    While studies of active nematics in two dimensions have shed light on various aspects of the flow regimes and topology of active matter, three-dimensional properties of topological defects and chaotic flows remain unexplored. By confining a film of active nematics between two parallel plates, we use continuum simulations and analytical arguments to demonstrate that the crossover from quasi-2D to 3D chaotic flows is controlled by the morphology of the disclination lines. For small plate separations, the active nematic behaves as a quasi-2D material, with straight topological disclination lines spanning the height of the channel and exhibiting effectively 2D active turbulence. Upon increasing channel height, we find a crossover to 3D chaotic flows due to the contortion of disclinations above a critical activity. We further show that these contortions are engendered by twist perturbations producing a sharp change in the curvature of disclinations.Comment: Accepted for PRE Rapid Communication

    Verticalization of bacterial biofilms

    Full text link
    Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an "inverse domino effect". The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15 figure

    A growing bacterial colony in two dimensions as an active nematic

    Get PDF
    Rod-shaped bacteria are an example of active matter. Here the authors find that a growing bacterial colony harbours internal cellular flows affecting orientational ordering in its interior and at the boundary. Results suggest this system may belong to a new active matter universality class

    IGAPS: the merged IPHAS and UVEX optical surveys of the Northern Galactic Plane

    Get PDF
    The INT Galactic Plane Survey (IGAPS) is the merger of the optical photometric surveys, IPHAS and UVEX, based on data from the Isaac Newton Telescope (INT) obtained between 2003 and 2018. Here, we present the IGAPS point source catalogue. It contains 295.4 million rows providing photometry in the filters, i, r, narrow-band Hα, g, and U_(RGO). The IGAPS footprint fills the Galactic coordinate range, |b| 5σ confidence)

    IGAPS: the merged IPHAS and UVEX optical surveys of theNorthern Galactic Plane

    Full text link
    The INT Galactic Plane Survey (IGAPS) is the merger of the optical photometric surveys, IPHAS and UVEX, based on data from the Isaac Newton Telescope (INT) obtained between 2003 and 2018. Here, we present the IGAPS point source catalogue. It contains 295.4 million rows providing photometry in the filters, i, r, narrow-band Halpha, g and U_RGO. The IGAPS footprint fills the Galactic coordinate range, |b| < 5deg and 30deg < l < 215deg. A uniform calibration, referred to the Pan-STARRS system, is applied to g, r and i, while the Halpha calibration is linked to r and then is reconciled via field overlaps. The astrometry in all 5 bands has been recalculated on the Gaia DR2 frame. Down to i ~ 20 mag (Vega system), most stars are also detected in g, r and Halpha. As exposures in the r band were obtained within the IPHAS and UVEX surveys a few years apart, typically, the catalogue includes two distinct r measures, r_I and r_U. The r 10sigma limiting magnitude is ~21, with median seeing 1.1 arcsec. Between ~13th and ~19th magnitudes in all bands, the photometry is internally reproducible to within 0.02 magnitudes. Stars brighter than r=19.5 have been tested for narrow-band Halpha excess signalling line emission, and for variation exceeding |r_I-r_U| = 0.2 mag. We find and flag 8292 candidate emission line stars and over 53000 variables (both at >5sigma confidence). The 174-column catalogue will be available via CDS Strasbourg.Comment: 28 pages, 22 figure

    MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales

    Get PDF
    Mathematical modeling and quantitative study of biological motility (in particular, of motility at microscopic scales) is producing new biophysical insight and is offering opportunities for new discoveries at the level of both fundamental science and technology. These range from the explanation of how complex behavior at the level of a single organism emerges from body architecture, to the understanding of collective phenomena in groups of organisms and tissues, and of how these forms of swarm intelligence can be controlled and harnessed in engineering applications, to the elucidation of processes of fundamental biological relevance at the cellular and sub-cellular level. In this paper, some of the most exciting new developments in the fields of locomotion of unicellular organisms, of soft adhesive locomotion across scales, of the study of pore translocation properties of knotted DNA, of the development of synthetic active solid sheets, of the mechanics of the unjamming transition in dense cell collectives, of the mechanics of cell sheet folding in volvocalean algae, and of the self-propulsion of topological defects in active matter are discussed. For each of these topics, we provide a brief state of the art, an example of recent achievements, and some directions for future research
    corecore