206 research outputs found

    SARS-CoV-2-specific memory B cells can persist in the elderly who have lost detectable neutralising antibodies

    Get PDF
    Memory B cells (MBC) can provide a recall response able to supplement waning antibodies with an affinity-matured response better able to neutralise variant viruses. We studied a cohort of elderly care home residents and younger staff (median age 87yrs and 56yrs respectively) who had survived COVID-19 outbreaks with only mild/asymptomatic infection. The cohort was selected to enrich for a high proportion who had lost neutralising antibodies (nAb), to specifically investigate the reserve immunity from SARS-CoV-2-specific MBC in this setting. Class-switched spike and RBD-tetramer-binding MBC persisted five months post-mild/asymptomatic SARS-CoV-2 infection, irrespective of age. The majority of spike/RBD-specific MBC had a classical phenotype but activated memory B cells, that may indicate ongoing antigenic stimulation or inflammation, were expanded in the elderly. Spike/RBD-specific MBC remained detectable in the majority who had lost nAb, although at lower frequencies and with a reduced IgG/IgA isotype ratio. Functional spike/S1/RBD-specific recall was also detectable by ELISpot in some who had lost nAb, but was significantly impaired in the elderly. Our findings demonstrate a reserve of SARS-CoV-2-specific MBC persists beyond loss of nAb, but highlight the need for careful monitoring of functional defects in spike/RBD-specific B cell immunity in the elderly

    Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings

    Get PDF
    There is a clear requirement for an accurate SARS-CoV-2 antibody test, both as a complement to existing diagnostic capabilities and for determining community seroprevalence. We therefore evaluated the performance of a variety of antibody testing technologies and their potential use as diagnostic tools. Highly specific in-house ELISAs were developed for the detection of anti-spike (S), -receptor binding domain (RBD) and -nucleocapsid (N) antibodies and used for the cross-comparison of ten commercial serological assays-a chemiluminescence-based platform, two ELISAs and seven colloidal gold lateral flow immunoassays (LFIAs)-on an identical panel of 110 SARS-CoV-2-positive samples and 50 pre-pandemic negatives. There was a wide variation in the performance of the different platforms, with specificity ranging from 82% to 100%, and overall sensitivity from 60.9% to 87.3%. However, the head-to-head comparison of multiple sero-diagnostic assays on identical sample sets revealed that performance is highly dependent on the time of sampling, with sensitivities of over 95% seen in several tests when assessing samples from more than 20 days post onset of symptoms. Furthermore, these analyses identified clear outlying samples that were negative in all tests, but were later shown to be from individuals with mildest disease presentation. Rigorous comparison of antibody testing platforms will inform the deployment of point-of-care technologies in healthcare settings and their use in the monitoring of SARS-CoV-2 infections

    Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant

    Get PDF
    Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants

    The effects of COVID-19 on cognitive performance in a community-based cohort: a COVID symptom study biobank prospective cohort study

    Get PDF
    BACKGROUND: Cognitive impairment has been reported after many types of infection, including SARS-CoV-2. Whether deficits following SARS-CoV-2 improve over time is unclear. Studies to date have focused on hospitalised individuals with up to a year follow-up. The presence, magnitude, persistence and correlations of effects in community-based cases remain relatively unexplored. METHODS: Cognitive performance (working memory, attention, reasoning, motor control) was assessed in a prospective cohort study of participants from the United Kingdom COVID Symptom Study Biobank between July 12, 2021 and August 27, 2021 (Round 1), and between April 28, 2022 and June 21, 2022 (Round 2). Participants, recruited from the COVID Symptom Study smartphone app, comprised individuals with and without SARS-CoV-2 infection and varying symptom duration. Effects of COVID-19 exposures on cognitive accuracy and reaction time scores were estimated using multivariable ordinary least squares linear regression models weighted for inverse probability of participation, adjusting for potential confounders and mediators. The role of ongoing symptoms after COVID-19 infection was examined stratifying for self-perceived recovery. Longitudinal analysis assessed change in cognitive performance between rounds. FINDINGS: 3335 individuals completed Round 1, of whom 1768 also completed Round 2. At Round 1, individuals with previous positive SARS-CoV-2 tests had lower cognitive accuracy (N = 1737, β = −0.14 standard deviations, SDs, 95% confidence intervals, CI: −0.21, −0.07) than negative controls. Deficits were largest for positive individuals with ≥12 weeks of symptoms (N = 495, β = −0.22 SDs, 95% CI: −0.35, −0.09). Effects were comparable to hospital presentation during illness (N = 281, β = −0.31 SDs, 95% CI: −0.44, −0.18), and 10 years age difference (60–70 years vs. 50–60 years, β = −0.21 SDs, 95% CI: −0.30, −0.13) in the whole study population. Stratification by self-reported recovery revealed that deficits were only detectable in SARS-CoV-2 positive individuals who did not feel recovered from COVID-19, whereas individuals who reported full recovery showed no deficits. Longitudinal analysis showed no evidence of cognitive change over time, suggesting that cognitive deficits for affected individuals persisted at almost 2 years since initial infection. INTERPRETATION: Cognitive deficits following SARS-CoV-2 infection were detectable nearly two years post infection, and largest for individuals with longer symptom durations, ongoing symptoms, and/or more severe infection. However, no such deficits were detected in individuals who reported full recovery from COVID-19. Further work is needed to monitor and develop understanding of recovery mechanisms for those with ongoing symptoms. FUNDING: Chronic Disease Research Foundation, Wellcome Trust, National Institute for Health and Care Research, Medical Research Council, British Heart Foundation, Alzheimer's Society, European Union, COVID-19 Driver Relief Fund, French National Research Agency

    Acute immune signatures and their legacies in severe acute respiratory syndrome coronavirus-2 infected cancer patients

    Get PDF
    Given the immune system’s importance for cancer surveillance and treatment, we have investigated how it may be affected by SARS-CoV-2 infection of cancer patients. Across some heterogeneity in tumor type, stage, and treatment, virus-exposed solid cancer patients display a dominant impact of SARS-CoV-2, apparent from the resemblance of their immune signatures to those for COVID-19+ non-cancer patients. This is not the case for hematological malignancies, with virus-exposed patients collectively displaying heterogeneous humoral responses, an exhausted T cell phenotype and a high prevalence of prolonged virus shedding. Furthermore, while recovered solid cancer patients’ immunophenotypes resemble those of nonvirus-exposed cancer patients, recovered hematological cancer patients display distinct, lingering immunological legacies. Thus, while solid cancer patients, including those with advanced disease, seem no more at risk of SARS-CoV-2-associated immune dysregulation than the general population, hematological cancer patients show complex immunological consequences of SARS-CoV-2 exposure that might usefully inform their care

    ACE2 expression in adipose tissue is associated with cardio-metabolic risk factors and cell type composition-implications for COVID-19

    Get PDF
    Background COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. Subjects/methods In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. Results Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 x 10(-6)), obesity status (P = 4.81 x 10(-5)), higher serum fasting insulin (P = 5.32 x 10(-4)), BMI (P = 3.94 x 10(-4)), and lower serum HDL levels (P = 1.92 x 10(-7)). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 x 10(-4)) and higher proportion of macrophages (P = 2.74 x 10(-5)). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. Conclusions Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.Peer reviewe

    Longitudinal Study of Primary HIV-1 Isolates in Drug-Naïve Individuals Reveals the Emergence of Variants Sensitive to Anti-HIV-1 Monoclonal Antibodies

    Get PDF
    To study how virus evolution affects neutralization sensitivity and to determine changes that occur in and around epitopes, we tested the ability of 13 anti-HIV-1 gp120 (anti-V2, anti-V3, anti-CD4bd and anti-carbohydrate) human monoclonal antibodies (mAbs) to neutralize sequential viruses obtained from five HIV-1 chronically infected drug naïve individuals. Overall, primary viruses collected from patients at first visit were resistant to neutralization by all anti-HIV-1 mAbs with the exception of one virus sensitive to IgG1b12. Four of the five patients' viruses evolved increased sensitivity to neutralization by anti-V3 mAbs. Virus collected from a patient obtained 31 months later, evolved increased sensitivity to anti-V2, anti-V3, and anti-CD4bd mAbs. Furthermore, the anti-V2 and anti-CD4bd mAbs also exhibited increased neutralization capacities against virus collected from a patient 29 months later. Of the seven anti-V3 mAbs, five showed increased potency to neutralize the evolved virus from a patient collected after 11 months, and three exhibited increased potency against viruses from two patients collected 29 and 36 months later. Anti-V3 mAbs exhibited the most breadth and potency in neutralizing the evolving viruses. Sequence analysis of the envelope regions revealed amino acid conservation within the V3 loop, while most of the changes identified occurred outside the core epitopes and in particular within the C3 region; these may account for increased neutralization sensitivity. These studies demonstrate that in vivo, HIV-1 can evolve increased neutralization sensitivity to mAbs and that the spectrum of neutralization capacities by mAbs can be broader when studied in longitudinal analysis

    Uukuniemi Phlebovirus Assembly and Secretion Leave a Functional Imprint on the Virion Glycome

    Get PDF
    Uukuniemi virus (UUKV) is a model system for investigating the genus Phlebovirus of the Bunyaviridae. We report the UUKV glycome, revealing differential processing of the Gn and Gc virion glycoproteins. Both glycoproteins display poly-N-acetyllactosamines, consistent with virion assembly in the medial Golgi apparatus, whereas oligomannose-type glycans required for DC-SIGN-dependent cellular attachment are predominant on Gc. Local virion structure and the route of viral egress from the cell leave a functional imprint on the phleboviral glycome

    Broadly neutralizing antibody responses in the longitudinal primary HIV-1 infection Short Pulse Anti-Retroviral Therapy at Seroconversion cohort

    Get PDF
    Objective: Development of immunogens that elicit an anti-HIV-1 broadly neutralizing antibody (bnAb) response will be a key step in the development of an effective HIV-1 vaccine. Although HIV-1 bnAb epitopes have been identified and mechanisms of action studied, current HIV-1 envelope-based immunogens do not elicit HIV-1 bnAbs in humans or animal models. A better understanding of how HIV-1 bnAbs arise during infection and the clinical factors associated with bnAb development may be critical for HIV-1 immunogen design efforts. Design and methods: Longitudinal plasma samples from the treatment-naive control arm of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) primary HIV-1 infection cohort were used in an HIV-1 pseudotype neutralization assay to measure the neutralization breadth, potency and specificity of bnAb responses over time. Results: In the SPARTAC cohort, development of plasma neutralization breadth and potency correlates with duration of HIV infection and high viral loads, and typically takes 3–4 years to arise. bnAb activity was mostly directed to one or two bnAb epitopes per donor and more than 60% of donors with the highest plasma neutralization having bnAbs targeted towards glycan-dependent epitopes. Conclusion: This study highlights the SPARTAC cohort as an important resource for more in-depth analysis of bnAb developmental pathways

    SARS-CoV-2 can recruit a haem metabolite to evade antibody immunity.

    Get PDF
    The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of haem metabolism, with nanomolar affinity. Using cryo-electron microscopy and X-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through the recruitment of a metabolite
    corecore