197 research outputs found

    Long-term cortisol levels in hair of children and adolescents with Prader-Willi Syndrome

    Get PDF
    Context: Prader-Willi syndrome (PWS) is characterized by hypothalamic dysfunction. In children with PWS, stress-induced central adrenal insufficiency (CAI) has been described, however, daily life cortisol production may be normal. Hair cortisol concentration (HCC) is a marker of long-term systemic cortisol production. Cortisol awakening response (CAR) is the increase in cortisol level after awakening. A negative CAR might suggest hypothalamic-pituitary-adrenal (HPA)-axis reactivity problems. Little is known about HCC and CAR in children with PWS. Objective: To investigate long-term cortisol levels in hair and CAR in children with PWS. Design: Cross-sectional study. Patients: 41 children with PWS. Setting: Dutch PWS Reference Center. Main outcome measures: HCC and salivary cortisol measured by LCMS. Results: Median (IQR) HCC was 1.90 (1.02–3.30) pg/mg at a median (IQR) age of 14.5 (8.20–19.0) years, with median HCC in age-matched references being 2.63 pg/mg. Five patients (13.2%) had HCC &lt; 2.5th percentile for age and these patients had a repeatedly negative CAR. Median HCC was significantly lower in patients with negative CAR than in patients with normal CAR (1.00 (0.22–1.59) vs. 2.25 (1.47–3.26) pg/mg, p = 0.007). One patient had both HCC &lt; 2.5th percentile and repeatedly low morning salivary cortisol levels and negative CAR, and was diagnosed with adrenal insufficiency by overnight metyrapone test. Conclusions: HCC were normal in the majority of children with PWS. Our data suggest that children with HCC &lt; 2.5th percentile and (repeatedly) negative CAR might possibly have adrenal insufficiency or delayed HPA-axis responsiveness.</p

    Epigenetic Chromatin Silencing: Bistability and Front Propagation

    Full text link
    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side-chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.Comment: 19 pages, 5 figure

    Diverse transcription influences can be insulated by the Drosophila SF1 chromatin boundary

    Get PDF
    Chromatin boundaries regulate gene expression by modulating enhancer–promoter interactions and insulating transcriptional influences from organized chromatin. However, mechanistic distinctions between these two aspects of boundary function are not well understood. Here we show that SF1, a chromatin boundary located in the Drosophila Antennapedia complex (ANT-C), can insulate the transgenic miniwhite reporter from both enhancing and silencing effects of surrounding genome, a phenomenon known as chromosomal position effect or CPE. We found that the CPE-blocking activity associates with different SF1 sub-regions from a previously characterized insulator that blocks enhancers in transgenic embryos, and is independent of GAF-binding sites essential for the embryonic insulator activity. We further provide evidence that the CPE-blocking activity cannot be attributed to an enhancer-blocking activity in the developing eye. Our results suggest that SF1 contains multiple non-overlapping activities that block diverse transcriptional influences from embryonic or adult enhancers, and from positive and negative chromatin structure. Such diverse insulating capabilities are consistent with the proposed roles of SF1 to functionally separate fushi tarazu (ftz), a non-Hox gene, from the enhancers and the organized chromatin of the neighboring Hox genes

    Novel bleeding risk score for patients with atrial fibrillation on oral anticoagulants, including direct oral anticoagulants

    Get PDF
    Objective: Balancing bleeding risk and stroke risk in patients with atrial fibrillation (AF) is a common challenge. Though several bleeding risk scores exist, most have not included patients on direct oral anticoagulants (DOACs). We aimed at developing a novel bleeding risk score for patients with AF on oral anticoagulants (OAC) including both vitamin K antagonists (VKA) and DOACs. Methods: We included patients with AF on OACs from a prospective multicenter cohort study in Switzerland (SWISS-AF). The outcome was time to first bleeding. Bleeding events were defined as major or clinically relevant non-major bleeding. We used backward elimination to identify bleeding risk variables. We derived the score using a point score system based on the Ξ²-coefficients from the multivariable model. We used the Brier score for model calibration (&lt;0.25 indicating good calibration), and Harrel's c-statistics for model discrimination. Results: We included 2147 patients with AF on OAC (72.5% male, mean age 73.4&nbsp;Β±&nbsp;8.2&nbsp;years), of whom 1209 (56.3%) took DOACs. After a follow-up of 4.4&nbsp;years, a total of 255 (11.9%) bleeding events occurred. After backward elimination, age&nbsp;&gt;&nbsp;75&nbsp;years, history of cancer, prior major hemorrhage, and arterial hypertension remained in the final prediction model. The Brier score was 0.23 (95% confidence interval [CI] 0.19–0.27), the c-statistic at 12&nbsp;months was 0.71 (95% CI 0.63–0.80). Conclusion: In this prospective cohort study of AF patients and predominantly DOAC users, we successfully derived a bleeding risk prediction model with good calibration and discrimination

    The Impact of Local Genome Sequence on Defining Heterochromatin Domains

    Get PDF
    Characterizing how genomic sequence interacts with trans-acting regulatory factors to implement a program of gene expression in eukaryotic organisms is critical to understanding genome function. One means by which patterns of gene expression are achieved is through the differential packaging of DNA into distinct types of chromatin. While chromatin state exerts a major influence on gene expression, the extent to which cis-acting DNA sequences contribute to the specification of chromatin state remains incompletely understood. To address this, we have used a fission yeast sequence element (L5), known to be sufficient to nucleate heterochromatin, to establish de novo heterochromatin domains in the Schizosaccharomyces pombe genome. The resulting heterochromatin domains were queried for the presence of H3K9 di-methylation and Swi6p, both hallmarks of heterochromatin, and for levels of gene expression. We describe a major effect of genomic sequences in determining the size and extent of such de novo heterochromatin domains. Heterochromatin spreading is antagonized by the presence of genes, in a manner that can occur independent of strength of transcription. Increasing the dosage of Swi6p results in increased heterochromatin proximal to the L5 element, but does not result in an expansion of the heterochromatin domain, suggesting that in this context genomic effects are dominant over trans effects. Finally, we show that the ratio of Swi6p to H3K9 di-methylation is sequence-dependent and correlates with the extent of gene repression. Taken together, these data demonstrate that the sequence content of a genomic region plays a significant role in shaping its response to encroaching heterochromatin and suggest a role of DNA sequence in specifying chromatin state

    Predicting hospital stay, mortality and readmission in people admitted for hypoglycaemia: prognostic models derivation and validation

    Get PDF
    Aims/hypothesis: Hospital admissions for hypoglycaemia represent a significant burden on individuals with diabetes and have a substantial economic impact on healthcare systems. To date, no prognostic models have been developed to predict outcomes following admission for hypoglycaemia. We aimed to develop and validate prediction models to estimate risk of inpatient death, 24 h discharge and one month readmission in people admitted to hospital for hypoglycaemia. Methods: We used the Hospital Episode Statistics database, which includes data on all hospital admission to National Health Service hospital trusts in England, to extract admissions for hypoglycaemia between 2010 and 2014. We developed, internally and temporally validated, and compared two prognostic risk models for each outcome. The first model included age, sex, ethnicity, region, social deprivation and Charlson score (β€˜base’ model). In the second model, we added to the β€˜base’ model the 20 most common medical conditions and applied a stepwise backward selection of variables (β€˜disease’ model). We used C-index and calibration plots to assess model performance and developed a calculator to estimate probabilities of outcomes according to individual characteristics. Results: In derivation samples, 296 out of 11,136 admissions resulted in inpatient death, 1789/33,825 in one month readmission and 8396/33,803 in 24 h discharge. Corresponding values for validation samples were: 296/10,976, 1207/22,112 and 5363/22,107. The two models had similar discrimination. In derivation samples, C-indices for the base and disease models, respectively, were: 0.77 (95% CI 0.75, 0.80) and 0.78 (0.75, 0.80) for death, 0.57 (0.56, 0.59) and 0.57 (0.56, 0.58) for one month readmission, and 0.68 (0.67, 0.69) and 0.69 (0.68, 0.69) for 24 h discharge. Corresponding values in validation samples were: 0.74 (0.71, 0.76) and 0.74 (0.72, 0.77), 0.55 (0.54, 0.57) and 0.55 (0.53, 0.56), and 0.66 (0.65, 0.67) and 0.67 (0.66, 0.68). In both derivation and validation samples, calibration plots showed good agreement for the three outcomes. We developed a calculator of probabilities for inpatient death and 24 h discharge given the low performance of one month readmission models. Conclusions/interpretation: This simple and pragmatic tool to predict in-hospital death and 24 h discharge has the potential to reduce mortality and improve discharge in people admitted for hypoglycaemia

    The CCCTC-Binding Factor (CTCF) of Drosophila Contributes to the Regulation of the Ribosomal DNA and Nucleolar Stability

    Get PDF
    In the repeat array of ribosomal DNA (rDNA), only about half of the genes are actively transcribed while the others are silenced. In arthropods, transposable elements interrupt a subset of genes, often inactivating transcription of those genes. Little is known about the establishment or separation of juxtaposed active and inactive chromatin domains, or preferential inactivation of transposable element interrupted genes, despite identity in promoter sequences. CTCF is a sequence-specific DNA binding protein which is thought to act as a transcriptional repressor, block enhancer-promoter communication, and delimit juxtaposed domains of active and inactive chromatin; one or more of these activities might contribute to the regulation of this repeated gene cluster. In support of this hypothesis, we show that the Drosophila nucleolus contains CTCF, which is bound to transposable element sequences within the rDNA. Reduction in CTCF gene activity results in nucleolar fragmentation and reduced rDNA silencing, as does disruption of poly-ADP-ribosylation thought to be necessary for CTCF nucleolar localization. Our data establish a role for CTCF as a component necessary for proper control of transposable element-laden rDNA transcription and nucleolar stability

    Nucleoporin Mediated Nuclear Positioning and Silencing of HMR

    Get PDF
    The organization of chromatin domains in the nucleus is an important factor in gene regulation. In eukaryotic nuclei, transcriptionally silenced chromatin clusters at the nuclear periphery while transcriptionally poised chromatin resides in the nuclear interior. Recent studies suggest that nuclear pore proteins (NUPs) recruit loci to nuclear pores to aid in insulation of genes from silencing and during gene activation. We investigated the role of NUPs at a native yeast insulator and show that while NUPs localize to the native tDNA insulator adjacent to the silenced HMR domain, loss of pore proteins does not compromise insulation. Surprisingly we find that NUPs contribute to silencing at HMR and are able to restore silencing to a silencing-defective HMR allele when tethered to the locus. We show that the perinuclear positioning of heterochromatin is important for the NUP-mediated silencing effect and find that loss of NUPs result in decreased localization of HMR to the nuclear periphery. We also show that loss of telomeric tethering pathways does not eliminate NUP localization to HMR, suggesting that NUPs may mediate an independent pathway for HMR association with the nuclear periphery. We propose that localization of NUPs to the tDNA insulator at HMR helps maintain the intranuclear position of the silent locus, which in turn contributes to the fidelity of silencing at HMR

    Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus

    Get PDF
    Cohesin is a chromatin-associated protein complex that mediates sister chromatid cohesion by connecting replicated DNA molecules. Cohesin also has important roles in gene regulation, but the mechanistic basis of this function is poorly understood. In mammalian genomes, cohesin co-localizes with CCCTC binding factor (CTCF), a zinc finger protein implicated in multiple gene regulatory events. At the imprinted IGF2-H19 locus, CTCF plays an important role in organizing allele-specific higher-order chromatin conformation and functions as an enhancer blocking transcriptional insulator. Here we have used chromosome conformation capture (3C) assays and RNAi-mediated depletion of cohesin to address whether cohesin affects higher order chromatin conformation at the IGF2-H19 locus in human cells. Our data show that cohesin has a critical role in maintaining CTCF-mediated chromatin conformation at the locus and that disruption of this conformation coincides with changes in IGF2 expression. We show that the cohesin-dependent, higher-order chromatin conformation of the locus exists in both G1 and G2 phases of the cell cycle and is therefore independent of cohesin's function in sister chromatid cohesion. We propose that cohesin can mediate interactions between DNA molecules in cis to insulate genes through the formation of chromatin loops, analogous to the cohesin mediated interaction with sister chromatids in trans to establish cohesion
    • …
    corecore