252 research outputs found

    Multiple elements in human β-globin locus control region 5′ HS 2 are involved in enhancer activity and position independent, transgene expression

    Get PDF
    The human β-globin Locus Control Region (LCR) has two important activities. First, the LCR opens a 200 kb chromosomal domain containing the human ε-, γ- and β-giobin genes and, secondly, these sequences function as a powerful enhancer of ε-, γ- and β-globin gene expression. Erythrold-specific, DNase I hypersensitive sites (HS) mark sequences that are critical for LCR activity. Previous experiments demonstrated that a 1.9 kb fragment containing the 5′ HS 2 site confers position-independent expression in transgenic mice and enhances human β-giobin gene expression 100-fold. Further analysis of this region demonstrates that multiple sequences are required for maximal enhancer activity; deletion of SP1, NF-E2, GATA-1 or USF binding sites significantly decrease β-globin gene expression. In contrast, no single site is required for position- independent transgene expression; all mice with site- specific mutations in 5′ HS 2 express human β-globin mRNA regardless of the site of transgene integration. Apparently, multiple combinations of protein binding sites in 5′ HS 2 are sufficient to prevent chromosomal position effects that inhibit transgene expression. © 1994 Oxford University Press

    Comparison of 6 Mortality Risk Scores for Prediction of 1-Year Mortality Risk in Older Adults with Multimorbidity

    Get PDF
    Importance: The most appropriate therapy for older adults with multimorbidity may depend on life expectancy (ie, mortality risk), and several scores have been developed to predict 1-year mortality risk. However, often, these mortality risk scores have not been externally validated in large sample sizes, and a head-to-head comparison in a prospective contemporary cohort is lacking. Objective: To prospectively compare the performance of 6 scores in predicting the 1-year mortality risk in hospitalized older adults with multimorbidity. Design, Setting, and Participants: This prognostic study analyzed data of participants in the OPERAM (Optimising Therapy to Prevent Avoidable Hospital Admissions in Multimorbid Older People) trial, which was conducted between December 1, 2016, and October 31, 2018, in surgical and nonsurgical departments of 4 university-based hospitals in Louvain, Belgium; Utrecht, the Netherlands; Cork, Republic of Ireland; and Bern, Switzerland. Eligible participants in the OPERAM trial had multimorbidity (≥3 coexisting chronic diseases), were aged 70 years or older, had polypharmacy (≥5 long-term medications), and were admitted to a participating ward. Data were analyzed from April 1 to September 30, 2020. Main Outcomes and Measures: The outcome of interest was any-cause death occurring in the first year of inclusion in the OPERAM trial. Overall performance, discrimination, and calibration of the following 6 scores were assessed: Burden of Illness Score for Elderly Persons, CARING (Cancer, Admissions ≥2, Residence in a nursing home, Intensive care unit admit with multiorgan failure, ≥2 Noncancer hospice guidelines) Criteria, Charlson Comorbidity Index, Gagné Index, Levine Index, and Walter Index. These scores were assessed using the following measures: Brier score (0 indicates perfect overall performance and 0.25 indicates a noninformative model); C-statistic and 95% CI; Hosmer-Lemeshow goodness-of-fit test and calibration plots; and sensitivity, specificity, and positive and negative predictive values. Results: The 1879 patients in the study had a median (IQR) age of 79 (74-84) years and 835 were women (44.4%). The median (IQR) number of chronic diseases was 11 (8-16). Within 1 year, 375 participants (20.0%) died. Brier scores ranged from 0.16 (Gagné Index) to 0.24 (Burden of Illness Score for Elderly Persons). C-statistic values ranged from 0.62 (95% CI, 0.59-0.65) for Charlson Comorbidity Index to 0.69 (95% CI, 0.66-0.72) for the Walter Index. Calibration was good for the Gagné Index and moderate for other mortality risk scores. Conclusions and Relevance: Results of this prognostic study suggest that all 6 of the 1-year mortality risk scores examined had moderate prognostic performance, discriminatory power, and calibration in a large cohort of hospitalized older adults with multimorbidity. Overall, none of these mortality risk scores outperformed the others, and thus none could be recommended for use in daily clinical practice.

    Novel bleeding risk score for patients with atrial fibrillation on oral anticoagulants, including direct oral anticoagulants

    Get PDF
    Objective: Balancing bleeding risk and stroke risk in patients with atrial fibrillation (AF) is a common challenge. Though several bleeding risk scores exist, most have not included patients on direct oral anticoagulants (DOACs). We aimed at developing a novel bleeding risk score for patients with AF on oral anticoagulants (OAC) including both vitamin K antagonists (VKA) and DOACs. Methods: We included patients with AF on OACs from a prospective multicenter cohort study in Switzerland (SWISS-AF). The outcome was time to first bleeding. Bleeding events were defined as major or clinically relevant non-major bleeding. We used backward elimination to identify bleeding risk variables. We derived the score using a point score system based on the β-coefficients from the multivariable model. We used the Brier score for model calibration (<0.25 indicating good calibration), and Harrel's c-statistics for model discrimination. Results: We included 2147 patients with AF on OAC (72.5% male, mean age 73.4 ± 8.2 years), of whom 1209 (56.3%) took DOACs. After a follow-up of 4.4 years, a total of 255 (11.9%) bleeding events occurred. After backward elimination, age > 75 years, history of cancer, prior major hemorrhage, and arterial hypertension remained in the final prediction model. The Brier score was 0.23 (95% confidence interval [CI] 0.19–0.27), the c-statistic at 12 months was 0.71 (95% CI 0.63–0.80). Conclusion: In this prospective cohort study of AF patients and predominantly DOAC users, we successfully derived a bleeding risk prediction model with good calibration and discrimination

    The Impact of Local Genome Sequence on Defining Heterochromatin Domains

    Get PDF
    Characterizing how genomic sequence interacts with trans-acting regulatory factors to implement a program of gene expression in eukaryotic organisms is critical to understanding genome function. One means by which patterns of gene expression are achieved is through the differential packaging of DNA into distinct types of chromatin. While chromatin state exerts a major influence on gene expression, the extent to which cis-acting DNA sequences contribute to the specification of chromatin state remains incompletely understood. To address this, we have used a fission yeast sequence element (L5), known to be sufficient to nucleate heterochromatin, to establish de novo heterochromatin domains in the Schizosaccharomyces pombe genome. The resulting heterochromatin domains were queried for the presence of H3K9 di-methylation and Swi6p, both hallmarks of heterochromatin, and for levels of gene expression. We describe a major effect of genomic sequences in determining the size and extent of such de novo heterochromatin domains. Heterochromatin spreading is antagonized by the presence of genes, in a manner that can occur independent of strength of transcription. Increasing the dosage of Swi6p results in increased heterochromatin proximal to the L5 element, but does not result in an expansion of the heterochromatin domain, suggesting that in this context genomic effects are dominant over trans effects. Finally, we show that the ratio of Swi6p to H3K9 di-methylation is sequence-dependent and correlates with the extent of gene repression. Taken together, these data demonstrate that the sequence content of a genomic region plays a significant role in shaping its response to encroaching heterochromatin and suggest a role of DNA sequence in specifying chromatin state

    Predicting hospital stay, mortality and readmission in people admitted for hypoglycaemia: prognostic models derivation and validation

    Get PDF
    Aims/hypothesis: Hospital admissions for hypoglycaemia represent a significant burden on individuals with diabetes and have a substantial economic impact on healthcare systems. To date, no prognostic models have been developed to predict outcomes following admission for hypoglycaemia. We aimed to develop and validate prediction models to estimate risk of inpatient death, 24 h discharge and one month readmission in people admitted to hospital for hypoglycaemia. Methods: We used the Hospital Episode Statistics database, which includes data on all hospital admission to National Health Service hospital trusts in England, to extract admissions for hypoglycaemia between 2010 and 2014. We developed, internally and temporally validated, and compared two prognostic risk models for each outcome. The first model included age, sex, ethnicity, region, social deprivation and Charlson score (‘base’ model). In the second model, we added to the ‘base’ model the 20 most common medical conditions and applied a stepwise backward selection of variables (‘disease’ model). We used C-index and calibration plots to assess model performance and developed a calculator to estimate probabilities of outcomes according to individual characteristics. Results: In derivation samples, 296 out of 11,136 admissions resulted in inpatient death, 1789/33,825 in one month readmission and 8396/33,803 in 24 h discharge. Corresponding values for validation samples were: 296/10,976, 1207/22,112 and 5363/22,107. The two models had similar discrimination. In derivation samples, C-indices for the base and disease models, respectively, were: 0.77 (95% CI 0.75, 0.80) and 0.78 (0.75, 0.80) for death, 0.57 (0.56, 0.59) and 0.57 (0.56, 0.58) for one month readmission, and 0.68 (0.67, 0.69) and 0.69 (0.68, 0.69) for 24 h discharge. Corresponding values in validation samples were: 0.74 (0.71, 0.76) and 0.74 (0.72, 0.77), 0.55 (0.54, 0.57) and 0.55 (0.53, 0.56), and 0.66 (0.65, 0.67) and 0.67 (0.66, 0.68). In both derivation and validation samples, calibration plots showed good agreement for the three outcomes. We developed a calculator of probabilities for inpatient death and 24 h discharge given the low performance of one month readmission models. Conclusions/interpretation: This simple and pragmatic tool to predict in-hospital death and 24 h discharge has the potential to reduce mortality and improve discharge in people admitted for hypoglycaemia

    A Single Heterochromatin Boundary Element Imposes Position-Independent Antisilencing Activity in Saccharomyces cerevisiae Minichromosomes

    Get PDF
    Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    Decreased proliferation of human melanoma cell lines caused by antisense RNA against translation factor eIF-4A1

    Get PDF
    Control of translation initiation was recognised as a critical checkpoint for cell proliferation and tumorigenesis. In human melanoma cells, we have previously reported consistent overexpression of translation initiation factor eIF-4A1. Here, we investigated by transfection of antisense constructs its significance for the control of melanoma cell growth. The tetracycline-inducible expression system was established in melanoma cells, and three fragments of the 5′-, central-, and 3′-portion of the eIF-4A1 cDNA were subcloned in antisense and in sense orientation after a tetracycline inducible promoter. Significant proliferation decrease was obtained after transient transfection and induction of antisense RNA directed against the 5′- and the central portion (up to 10%), whereas, no effects were seen after induction of the 3′-fragment and the sense controls. Cell clones stably transfected with the central antisense fragment revealed after doxycycline induction reduced expression of endogeneous eIF-4A1 mRNA correlated with decreased proliferation rates (up to 6%). These data demonstrate the applicability of antisense strategies against translation factors in melanoma cells. Translation initiation factor eIF-4A1 contributes to the control of melanoma cell proliferation and may be taken into consideration when scheduling new therapeutic approaches targeting the translational control
    corecore