18 research outputs found

    Murine Models of B-Cell Lymphomas: Promising Tools for Designing Cancer Therapies

    Get PDF
    Human B-cell lymphomas, the fourth most common hematologic malignancy, are currently the subject of extensive research. The limited accessibility of biopsies, the heterogeneity among patients, and the subtypes of lymphomas have necessitated the development of animal models to decipher immune escape mechanisms and design new therapies. Here, we summarize the cell lines and murine models used to study lymphomagenesis, the lymphoma microenvironment, and the efficacy of new therapies. These data allow us to understand the role of the immune system in the fight against tumors. Exploring the advantages and limitations of immunocompetent versus immunodeficient models improves our understanding of the molecular and cellular mechanisms of tumor genesis and development as well as the fundamental processes governing the interaction of tumors and their host tissues. We posit that these basic preclinical investigations will open up new and promising approaches to designing better therapies

    Th17 Cells Are Involved in the Local Control of Tumor Progression in Primary Intraocular Lymphoma

    Get PDF
    BACKGROUND: Th17 cells play an important role in the pathogenesis of many autoimmune diseases, but despite some reports of their antitumor properties, too little is known about their presence and role in cancers. Specifically, knowledge is sparse about the relation of Th17 to lymphoma microenvironments and, more particularly, to the microenvironment of primary intraocular B-cell lymphoma (PIOL), an aggressive lymphoma with a poor prognosis. METHODS AND PRINCIPAL FINDINGS: In this work, we investigated the presence of Th17 cells and their related cytokines in a syngeneic model of PIOL, a subtype of non-Hodgkin lymphoma. The very small number of lymphocytes trafficking in normal eyes, which represent a low background as compared to tumor-bearing eyes, allows us to develop the present model to characterize the different lymphocyte subsets present when a tumor is developing. IL-21 mRNA was expressed concomitantly with IL-17 mRNA in tumor-bearing eyes and intracellular expression of IL-17A and IL-21 in infiltrating CD4(+) T lymphocytes. Interestingly, IL-17A production by T cells was negatively correlated with tumor burden. We also showed that IL-21 but not IL-17 inhibits tumor cell proliferation in vitro. CONCLUSIONS: These data demonstrate that IL-17A and IL-21-producing CD4(+) T cells, referred as Th17 cells, infiltrate this tumor locally and suggest that Th17-related cytokines may counteract tumor progression via IL-21 production. Thus, Th17 cells or their related cytokines could be considered to be a new therapeutic approach for non-Hodgkin B-cell lymphomas, particularly those with an ocular localization

    Caractérisation des cellules microgliales adultes et de leur potentiel en immunothérapie des tumeurs cérébrales

    No full text
    Microglial cells harbour an interesting potential against brain tumors. Following activation, they are indistinguishable from peripheral macrophages. Using products from a microglial subtractive bank obtained in the laboratory, we found that three messengers allowed to discriminate between primary microglia and macrophages. We also demonstrated that microglia was able in vitro and ex vivo to cross-present antigens and that this could be potentiated by CpG-ODN and GM-CSF. To take advantage of all these results, we developed two brain tumor models with different immunogenicity. A therapy combining regulatory T cell depletion and CpG-ODN injection was then evaluated against brain or peripheral tumors. To finish, we also characterized mouse and human IRG-1, that proved to be a new activation marker of innate immune cells stimulated by interferons or TLR agonists, and as such could be very useful at least to follow evolution of the immune response after application of a therapy.Les cellules microgliales, principales cellules immunocompĂ©tentes rĂ©sidentes du systĂšme nerveux central (SNC), d'origine myĂ©loĂŻde, prĂ©sentent un potentiel intĂ©ressant dans la lutte contre le cancer par leur localisation privilĂ©giĂ©e dans les tumeurs cĂ©rĂ©brales. A la moindre perturbation de leur microenvironnement, elles s'activent graduellement, rĂ©-expriment toutes les molĂ©cules nĂ©cessaires Ă  la prĂ©sentation de l'antigĂšne, perdent leurs prolongements cytoplasmiques jusqu'Ă  devenir amiboĂŻdes et sont donc Ă  terme totalement indiscernables des macrophages pĂ©riphĂ©riques. Dans le cadre d'une immunothĂ©rapie anti-tumorale, il est important pour mieux comprendre les rĂ©ponses immunitaires de pouvoir distinguer les divers protagonistes. Au sein des produits d'une banque soustractive microgliale rĂ©alisĂ©e auparavant au laboratoire, trois ARNm se sont rĂ©vĂ©lĂ©s discriminants entre cellules microgliales et macrophages primaires et ce, mĂȘme en condition pro- ou anti-inflammatoire. Les cellules microgliales peuvent Ă©galement dans certaines conditions se diffĂ©rencier en cellules type dendritique. Or ces derniĂšres sont trĂšs prometteuses en immunothĂ©rapie active, notamment par leur capacitĂ© Ă  effectuer la prĂ©sentation croisĂ©e. En utilisant la microglie nĂ©onatale ou adulte primaire, nous avons mis en Ă©vidence que la microglie in vitro et ex vivo Ă©tait aussi capable de prĂ©sentation croisĂ©e et que celle-ci, bien que de faible intensitĂ©, peut ĂȘtre modulĂ©e positivement par le GM-CSF et le CpG. Deux modĂšles de tumeurs intracĂ©rĂ©brales plus ou moins immunogĂšnes implantĂ©es par stĂ©rĂ©otaxie chez la souris ont alors Ă©tĂ© dĂ©veloppĂ©s afin d'Ă©valuer des protocoles utilisant ces rĂ©sultats. Ainsi un traitement combinant dĂ©plĂ©tion des lymphocytes T rĂ©gulateurs et injection de CpG permet de guĂ©rir la plupart des animaux ayant la tumeur la moins agressive mais ne montre en revanche pas de rĂ©el bĂ©nĂ©fice pour la tumeur trĂšs agressive en intracĂ©rĂ©bral alors qu'en pĂ©riphĂ©rie les rĂ©sultats sont systĂ©matiquement meilleurs. Enfin, l'immune responsive gene 1, issu de la banque soustractive, a Ă©tĂ© caractĂ©risĂ© et s'avĂšre ĂȘtre un nouveau marqueur potentiel d'activation des cellules immunitaires innĂ©es stimulĂ©es par les interfĂ©rons ou les ligands des rĂ©cepteurs Toll, aussi bien chez la souris que chez l'homme, et pourrait donc ĂȘtre intĂ©ressant pour suivre l'Ă©volution de la rĂ©ponse du systĂšme immunitaire aprĂšs une thĂ©rapie

    Caractérisation des cellules microgliales adultes et de leur potentiel en immunothérapie des tumeurs cérébrales

    No full text
    Les cellules microgliales, principales cellules immunocompĂ©tentes rĂ©sidentes du systĂšme nerveux central (SNC), d'origine myĂ©loĂŻde, prĂ©sentent un potentiel intĂ©ressant dans la lutte contre le cancer par leur localisation privilĂ©giĂ©e dans les tumeurs cĂ©rĂ©brales. A la moindre perturbation de leur microenvironnement, elles s'activent graduellement, rĂ©-expriment toutes les molĂ©cules nĂ©cessaires Ă  la prĂ©sentation de l'antigĂšne, perdent leurs prolongements cytoplasmiques jusqu'Ă  devenir amiboĂŻdes et sont donc Ă  terme totalement indiscernables des macrophages pĂ©riphĂ©riques. Dans le cadre d'une immunothĂ©rapie anti-tumorale, il est important pour mieux comprendre les rĂ©ponses immunitaires de pouvoir distinguer les divers protagonistes. Au sein des produits d'une banque soustractive microgliale rĂ©alisĂ©e auparavant au laboratoire, trois ARNm se sont rĂ©vĂ©lĂ©s discriminants entre cellules microgliales et macrophages primaires et ce, mĂȘme en condition pro- ou anti-inflammatoire. Les cellules microgliales peuvent Ă©galement dans certaines conditions se diffĂ©rencier en cellules type dendritique. Or ces derniĂšres sont trĂšs prometteuses en immunothĂ©rapie active, notamment par leur capacitĂ© Ă  effectuer la prĂ©sentation croisĂ©e. En utilisant la microglie nĂ©onatale ou adulte primaire, nous avons mis en Ă©vidence que la microglie in vitro et ex vivo Ă©tait aussi capable de prĂ©sentation croisĂ©e et que celle-ci, bien que de faible intensitĂ©, peut ĂȘtre modulĂ©e positivement par le GM-CSF et le CpG. Deux modĂšles de tumeurs intracĂ©rĂ©brales plus ou moins immunogĂšnes implantĂ©es par stĂ©rĂ©otaxie chez la souris ont alors Ă©tĂ© dĂ©veloppĂ©s afin d'Ă©valuer des protocoles utilisant ces rĂ©sultats. Ainsi un traitement combinant dĂ©plĂ©tion des lymphocytes T rĂ©gulateurs et injection de CpG permet de guĂ©rir la plupart des animaux ayant la tumeur la moins agressive mais ne montre en revanche pas de rĂ©el bĂ©nĂ©fice pour la tumeur trĂšs agressive en intracĂ©rĂ©bral alors qu'en pĂ©riphĂ©rie les rĂ©sultats sont systĂ©matiquement meilleurs. Enfin, l'immune responsive gene 1, issu de la banque soustractive, a Ă©tĂ© caractĂ©risĂ© et s'avĂšre ĂȘtre un nouveau marqueur potentiel d'activation des cellules immunitaires innĂ©es stimulĂ©es par les interfĂ©rons ou les ligands des rĂ©cepteurs Toll, aussi bien chez la souris que chez l'homme, et pourrait donc ĂȘtre intĂ©ressant pour suivre l'Ă©volution de la rĂ©ponse du systĂšme immunitaire aprĂšs une thĂ©rapie.Microglial cells harbour an interesting potential against brain tumors. Following activation, they are indistinguishable from peripheral macrophages. Using products from a microglial subtractive bank obtained in the laboratory, we found that three messengers allowed to discriminate between primary microglia and macrophages. We also demonstrated that microglia was able in vitro and ex vivo to cross-present antigens and that this could be potentiated by CpG-ODN and GM-CSF. To take advantage of all these results, we developed two brain tumor models with different immunogenicity. A therapy combining regulatory T cell depletion and CpG-ODN injection was then evaluated against brain or peripheral tumors. To finish, we also characterized mouse and human IRG-1, that proved to be a new activation marker of innate immune cells stimulated by interferons or TLR agonists, and as such could be very useful at least to follow evolution of the immune response after application of a therapy.ANGERS-BU MĂ©decine-Pharmacie (490072105) / SudocSudocFranceF

    Bioluminescence-Based Tumor Quantification Method for Monitoring Tumor Progression and Treatment Effects in Mouse Lymphoma Models

    No full text
    Although bioluminescence imaging (BLI) shows promise for monitoring tumor burden in animal models of cancer, these analyses remain mostly qualitative. Here we describe a method for bioluminescence imaging to obtain a semi-quantitative analysis of tumor burden and treatment response. This method is based on the calculation of a luminoscore, a value that allows comparisons of two animals from the same or different experiments. Current BLI instruments enable the calculation of this luminoscore, which relies mainly on the acquisition conditions (back and front acquisitions) and the drawing of the region of interest (manual markup around the mouse). Using two previously described mouse lymphoma models based on cell engraftment, we show that the luminoscore method can serve as a noninvasive way to verify successful tumor cell inoculation, monitor tumor burden, and evaluate the effects of in situ cancer treatment (CpG-DNA). Finally, we show that this method suits different experimental designs. We suggest that this method be used for early estimates of treatment response in preclinical small-animal studies

    Lymphoma B-cell responsiveness to CpG-DNA depends on the tumor microenvironment

    Get PDF
    International audienceToll-like receptor (TLR) agonists have important properties that can be exploited for immunotherapy against tumors. Locally injected immunostimulatory oligodeoxynucleotides containing CpG motifs (CpG-ODNs), which are TLR9 agonists, have shown promise in cancer models. Several studies have demonstrated that these motifs have immunologic effects similar to those of bacterial DNA and can stimulate monocytes, macrophages, dendritic, and B cells, which then produce several proinflammatory cytokines. However, these CpG-ODNs appear to produce opposite effects on tumor B cells. METHODS: In this study, we investigated the direct effects of a murine class B CpG (1826) ODNs on lymphoma B cells in vitro and in vivo, using mouse models of non-Hodgkin B lymphomas developing in immunoprivileged sites, specifically the brain and the eye, and in subcutaneous sites. RESULTS: In vitro, CpG-ODNs produced antiproliferative and proapoptotic effects on lymphoma B cells. In vivo, it had an antitumor effect when injected into tumors in murine models of subcutaneous lymphoma (SCL) and primary cerebral lymphoma (PCL). However, its intravitreal administration into a primary intraocular lymphoma (PIOL) mouse model did not produce an antitumor effect. In vitro experiments using supernatant from mouse PIOL samples demonstrated that the PIOL molecular microenvironment inhibits the antiproliferative effect of CpG-ODNs on lymphoma B-cells. CONCLUSIONS: Responsiveness to CpG stimulation differs in subcutaneous, cerebral, and ocular tumors, according to the tumoral and molecular microenvironment, and this should be considered for further therapeutic approaches

    IL-17 has no effect on lymphoma B cells.

    No full text
    <p>(<b>A</b>) Analysis of IL-17RA mRNA expression by RT-PCR of A20.IIA-GFP cells. (<b>B</b>) Proliferation assay with a [<sup>3</sup>H]-thymidine incorporation to evaluate the effect of murine IL-17 (mIL-17) on A20.IIA-GFP cells. Data are representative of at least two independent experiments. Error bars represent SD.</p

    IL-21 effect on lymphomatous B-cells.

    No full text
    <p>(<b>A</b>) Analysis of IL-21R mRNA expression by RT-PCR of A20.IIA-GFP cells. (<b>B–D</b>) Proliferation assay with a [<sup>3</sup>H]-thymidine incorporation to evaluate effects of murine IL-21 (mIL-21) on A20.IIA-GFP cells. (<b>C</b>) Murine IL-21 effect is blocked by 30 ”g/ml neutralizing anti-mIL-21 Ab. (<b>D</b>) Effect of mIL-21 on cell cycle of murine A20.IIA-GFP cells. Data are representative of at least two independent experiments. Error bars represent SD. (<b>E</b>) Human IL-21 (hIL-21) effect on VAL cell line proliferation. Comparison with untreated cells was tested with Mann-Whitney analysis (*, p<.05; **, p<.001).</p
    corecore