13 research outputs found

    Conceptual framework for balancing society and nature in net-zero energy transitions

    Get PDF
    Transitioning to a low carbon energy future is essential to meet the Paris Agreement targets and Sustainable Development Goals (SDGs). To understand how societies can undertake this transition, energy models have been developed to explore future energy scenarios. These models often focus on the techno-economic aspects of the transition and overlook the long-term implications on both society and the natural environment. Without a holistic approach, it is impossible to evaluate the trade-offs, as well as the co-benefits, between decarbonisation and other policy goals. This paper presents the Energy Scenario Evaluation (ESE) framework which can be used to assess the impact of energy scenarios on society and the natural environment. This conceptual framework utilises interdisciplinary qualitative and quantitative methods to determine whether an energy scenario is likely to lead to a publicly acceptable and sustainable energy transition. Using the SDGs, this paper illustrates how energy transitions are interconnected with human development and the importance of incorporating environmental and socio-economic data into energy models to design energy scenarios which meet other policy priorities. We discuss a variety of research methods which can be used to evaluate spatial, environmental, and social impacts of energy transitions. By showcasing where these impacts will be experienced, the ESE framework can be used to facilitate engagement and decision-making between policymakers and local communities, those who will be directly affected by energy transitions. Outputs of the ESE framework can therefore perform an important role in shaping feasible and energy transitions which meet the Paris Agreement targets and SDGs

    Status and prospects for renewable energy using wood pellets from the southeastern United States

    Get PDF
    The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, ‘How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?’ To address this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management

    Land-use change from food to energy: meta-analysis unravels effects of bioenergy on biodiversity and cultural ecosystem services

    No full text
    Bioenergy has been identified as a key contributor to future energy scenarios consistent with the Paris Agreement targets, and is relied upon in scenarios both with and without bioenergy with carbon capture and storage, owing to the multiple ways in which bioenergy can substitute fossil fuels. Understanding the environmental and societal impacts of land-use change (LUC) to bioenergy crops is important in determining where and how they could be deployed, and the resulting trade-offs and co-benefits. We use systematic review and meta-analysis to assess the existing literature on two poorly understood impacts of this LUC that are likely to have an important effect on public acceptability: cultural ecosystem services and biodiversity. We focus on the impact of LUC to non-food bioenergy crops on agricultural landscapes, where large-scale bioenergy planting may be required. Our meta-analysis finds strong benefits for biodiversity overall (up 75% ± 13%), with particular benefits for bird abundance (+81% ± 32%), bird species richness (+100% ± 31%), arthropod abundance (+52% ± 36%), microbial biomass (+77% ± 24%), and plant species richness (+25% ± 22%), when land moves out of either arable crops or grassland to bioenergy production. Conversions from arable land to energy trees led to particularly strong benefits, providing an insight into how future LUC to non-food bioenergy crops could support biodiversity. There were inadequate data to complete a meta-analysis on the effects of non-food bioenergy crops on cultural ecosystem services, and few generalizable conclusions from a systematic review of the literature, however, findings highlight the importance of landscape context and planting strategies in determining impact. Our findings demonstrate improved farm-scale biodiversity on agricultural land with non-food bioenergy crops, but also limited knowledge concerning public response to this LUC, which could prove crucial to the successful expansion of bioenergy to meet the Paris targets

    Bioenergy with Carbon Capture and Storage (BECCS) in the UK: Contrasting land-use scenarios and implications for natural capital

    No full text
    Energy scenarios designed to meet the ambitious 1.5 oC and 2 oC targets established at the Paris Agreement emphasise the importance that Bioenergy with Carbon Capture and Storage (BECCS) could play by generating significant “negative emissions”. Deploying BECCS will require significant infrastructural and logistical developments, as well as substantial land-use change. Here we explore how a national BECCS policy could be developed. Using the UK as a case study we highlight the technical, environmental, and social constraints, trade-offs, and synergies that are associated with a BECCS policy

    Spatial context matters: Assessing how future renewable energy pathways will impact nature and society

    No full text
    Pathways to decarbonisation are commonly explored by government and industry through the use of energy system models. However, such models rarely consider where new energy infrastructure might be located. This is problematic as the spatial context of new renewable energy infrastructure will determine, in part, the environmental, social, and technical impacts of the energy transition. This paper presents the ADVENT-NEV model which brings together innovations in energy and natural capital modelling to identify the optimal locations of multiple renewable energy technologies at a national scale and high spatial resolution. Using Great Britain as a case study, the results show how the spatial distribution of renewable energy technologies changes when a natural capital approach is taken. In particular, the least-cost locations for onshore wind farms and bioenergy crops are highly influenced by the value of carbon sequestration, or emissions associated with their land use change. Siting using a natural capital approach produced appreciable ecosystem service benefits, such that the overall welfare gain to society was estimated at nearly £25 B. Overall, this paper demonstrates that understanding the geospatial context of the energy transition is essential to identifying which renewable energy pathways are consistent with decarbonisation and environmental objectives
    corecore