74 research outputs found

    Exome sequencing identifies a missense variant in EFEMP1 co-segregating in a family with autosomal dominant primary open-angle glaucoma

    Get PDF
    Primary open-angle glaucoma (POAG) is a clinically important and genetically heterogeneous cause of progressive vision loss as a result of retinal ganglion cell death. Here we have utilized trio-based, whole-exome sequencing to identify the genetic defect underlying an autosomal dominant form of adult-onset POAG segregating in an African-American family. Exome sequencing identified a novel missense variant (c.418C>T, p.Arg140Trp) in exon-5 of the gene coding for epidermal growth factor (EGF) containing fibulin-like extracellular matrix protein 1 (EFEMP1) that co-segregated with disease in the family. Linkage and haplotype analyses with microsatellite markers indicated that the disease interval overlapped a known POAG locus (GLC1H) on chromosome 2p. The p.Arg140Trp substitution was predicted in silico to have damaging effects on protein function and transient expression studies in cultured cells revealed that the Trp140-mutant protein exhibited increased intracellular accumulation compared with wild-type EFEMP1. In situ hybridization of the mouse eye with oligonucleotide probes detected the highest levels of EFEMP1 transcripts in the ciliary body, cornea, inner nuclear layer of the retina, and the optic nerve head. The recent finding that a common variant near EFEMP1 was associated with optic nerve-head morphology supports the possibility that the EFEMP1 variant identified in this POAG family may be pathogenic

    Exome sequencing identifies novel and recurrent mutations in GJA8 and CRYGD associated with inherited cataract

    Get PDF
    BACKGROUND: Inherited cataract is a clinically important and genetically heterogeneous cause of visual impairment. Typically, it presents at an early age with or without other ocular/systemic signs and lacks clear phenotype-genotype correlation rendering both clinical classification and molecular diagnosis challenging. Here we have utilized trio-based whole exome sequencing to discover mutations in candidate genes underlying autosomal dominant cataract segregating in three nuclear families. RESULTS: In family A, we identified a recurrent heterozygous mutation in exon-2 of the gene encoding γD-crystallin (CRYGD; c.70C > A, p.Pro24Thr) that co-segregated with ‘coralliform’ lens opacities. Families B and C were found to harbor different novel variants in exon-2 of the gene coding for gap-junction protein α8 (GJA8; c.20T > C, p.Leu7Pro and c.293A > C, p.His98Pro). Each novel variant co-segregated with disease and was predicted in silico to have damaging effects on protein function. CONCLUSIONS: Exome sequencing facilitates concurrent mutation-profiling of the burgeoning list of candidate genes for inherited cataract, and the results can provide enhanced clinical diagnosis and genetic counseling for affected families. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40246-014-0019-6) contains supplementary material, which is available to authorized users

    Biallelic mutation of Protocadherin-21 (PCDH21) causes retinal degeneration in humans

    Get PDF
    PurposeTo describe the clinical findings and mutations in affected members of two families with an autosomal recessive retinal dystrophy associated with mutations in the protocadherin-21 (PCDH21) gene.MethodsA full genome scan of members of two consanguineous families segregating an autosomal recessive retinal dystrophy was performed and regions identical by descent identified. Positional candidate genes were identified and sequenced. All patients had a detailed ophthalmic examination, including electroretinography and retinal imaging.ResultsAffected members of both families showed identical homozygosity for an overlapping region of chromosome 10q. Sequencing of a candidate gene, PCDH21, showed two separate homozygous single-base deletions, c.337delG (p.G113AfsX1) and c.1459delG (p.G487GfsX20), which were not detected in 282 control chromosomes. Affected members of the two families first reported nyctalopia in late teenage years and retained good central vision until their late 30s. No color vision was detected in any proband. The fundus appearance included the later development of characteristic circular patches of pigment epithelial atrophy at the macula and in the peripheral retina.ConclusionsBiallelic mutations in the photoreceptor-specific gene PCDH21 cause recessive retinal degeneration in humans

    Novel mutations in MERTK associated with childhood onset rod-cone dystrophy

    Get PDF
    PurposeTo report the clinical phenotype in patients with a retinal dystrophy associated with novel mutations in the MER tyrosine kinase (MERTK) gene.MethodsA consanguineous family of Middle Eastern origin was identified, and affected members underwent a full clinical evaluation. Linkage analysis was performed using the Affymetrix 50K chip. Regions of homozygosity were identified. The positional candidate genes protocadherin 21 (PCDH21), retinal G protein-coupled receptor (RGR), and MERTK were polymerase chain reaction (PCR) amplified and sequenced. Long-range PCR was performed to characterize the deletion. Two hundred and ninety-two probands with autosomal recessive, childhood onset, retinal dystrophies were analyzed using the Asper Ophthalmics Leber congenital amaurosis chip to screen for known MERTK mutations.ResultsAnalysis of a 50K-Affymetrix whole genome scan identified three regions of homozygosity on chromosomes 2 and 10. Screening of the candidate gene MERTK showed a possible deletion of exon 8. Long-range PCR identified a ~9 kb deletion within MERTK that removes exon 8. Screening of DNA from a panel of Saudi Arabian patients with autosomal recessive retinitis pigmentosa identified a second consanguineous family with the same mutation. One patient with a known MERTK mutation (p.R651X) was identified using the Asper Ophthalmics Leber congenital amaurosis chip. Further screening of the gene identified a second novel splice site mutation in intron 1. The phenotype associated with these identified MERTK mutations is of a childhood onset rod-cone dystrophy with early macular atrophy. The optical coherence tomography (OCT) appearance is distinctive with evidence of debris beneath the sensory retina.ConclusionsMutations in MERTK are a rare cause of retinal dystrophy. Non homologous recombination between Alu Y repeats near or within disease genes may be an important cause of retinal dystrophies

    A detailed phenotypic assessment of individuals affected by MFRP-related oculopathy

    Get PDF
    Purpose: To determine the spectrum of mutations and phenotypic variability within patients with mutations in membrane-type frizzled related protein gene (MFRP).Methods: Individuals were initially ascertained based on a phenotype similar to that previously published in association with MFRP mutations. Affected patients underwent a full ophthalmic examination (best-corrected visual acuity, slit-lamp examination, applanation tonometry, and fundoscopy), color fundus photography, optical coherence tomography, autofluorescence imaging, and electrophysiology. MFRP was identified by a genome-wide scan in the fourth-largest autozygous region in one consanguineous family. Sanger sequencing of all the exons and intron-exon boundaries of MFRP was undertaken in the affected individuals.Results: Seven affected individuals from four families were identified as having mutations in MFRP. Patients from two families were homozygous for mutations already previously described (c. 1143_1144 insC and c. 492 delC), while those from the other two were compound heterozygous for mutations (c. 201G>A and c. 491_492 insT, and c. 492 delC, and c. 1622_1625 delTCTG), three of which were novel. There was considerable phenotypic variability within and among families. Autofluorescence imaging revealed the central macula to be relatively well preserved. Foveal cysts and optic nerve head drusen were present in two of the four families. Electrophysiology results showed rod-cone dystrophy with mild to moderate reduction in macular function in all affected members.Conclusions: We report three novel MFRP mutations and expand the phenotypic data available on patients with MFRP mutations

    RDH12 retinopathy: novel mutations and phenotypic description

    Get PDF
    PurposeTo identify patients with autosomal recessive retinal dystrophy caused by mutations in the gene, retinal dehydrogenase 12 (RDH12), and to report the associated phenotype.MethodsAfter giving informed consent, all patients underwent full clinical evaluation. Patients were selected for mutation analysis based upon positive results from the Asper Ophthalmics Leber congenital amaurosis arrayed primer extansion (APEX) microarray screening, linkage analysis, or their clinical phenotype. All coding exons of RDH12 were screened by direct Sanger sequencing. Potential variants were checked for segregation in the respective families and screened in controls, and their pathogenicity analyzed using in silico prediction programs.ResultsScreening of 389 probands by the APEX microarray and/or direct sequencing identified bi-allelic mutations in 29 families. Seventeen novel mutations were identified. The phenotype in these patients presented with a severe early-onset rod-cone dystrophy. Funduscopy showed severe generalized retinal pigment epithelial and retinal atrophy, which progressed to dense, widespread intraretinal pigment migration by adulthood. The macula showed severe atrophy, with pigmentation and yellowing, and corresponding loss of fundus autofluorescence. Optical coherence tomography revealed marked retinal thinning and excavation at the macula.ConclusionsRDH12 mutations account for approximately 7% of disease in our cohort of patients diagnosed with Leber congenital amaurosis and early-onset retinal dystrophy. The clinical features of this disorder are highly characteristic and facilitate candidate gene screening. The term RDH12 retinopathy is proposed as a more accurate description
    corecore