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 Congenital and infantile forms of cataracts (lens opaci-
ties) present at birth and during the first year of life, respec-
tively. Because these neonatal lens opacities can cause blur-
ring of vision during the critical period of form-vision devel-
opment, they are clinically important as a cause of depriva-
tion amblyopia [1] and represent a significant cause of vision
impairment, accounting for an estimated 10-20% of childhood
blindness in developing countries [2] and about 4% of adult
blindness in industrialized countries [3]. According to the US
collaborative perinatal project [4], infantile cataracts present
with a prevalence of 13.6 cases per 10,000 live births, with a
similar prevalence of unilateral to bilateral cases, occurring
either as an isolated, non-syndromic lens defect (about 43%
of cases) or in association with other ocular and/or systemic
disorders, including congenital rubella syndrome [4] and many
diverse genetic syndromes (Online Mendelian Inheritance in
Man). All three classical types of Mendelian inheritance have
been described for non-syndromic cataracts. However, the ma-
jority of families reported display autosomal dominant trans-
mission.

Currently, at least twenty loci for clinically diverse forms
of non-syndromic Mendelian cataracts have been mapped on
fourteen human chromosomes. No causative genes have been
reported at six of the dominant loci on chromosomes 1p [5,6],

2p [7], 15q [8], 17p [9], 17q24 [10], and 20p [11] or at the two
recessive loci on 3p [12] and 9q [13]. However, underlying
mutations have been identified in several functionally diverse
genes, including seven crystallin genes located on 2q (CRYGC
and CRYGD [14-22]), 11q (CRYAB [23]), 17q (CRYBA3/A1
[20,24,25]), 21q (CRYAA [26-28]), and 22q (CRYBB1 and
CRYBB2 [29-32]), an aquaporin gene (MIP/AQP) on 12q [33],
an intermediate filament-like gene (BFSP2) on 3q [34,35], a
heat shock transcription factor gene (HSP4) on 16q [36], a
tetraspan-like gene (LIM2) on 19q [37], two genes for gap-
junction proteins α8 (GJA8) on 1q [38-41], and α3 (GJA3) on
13q [42-44].

Gap-junctions are specialized arrays of cell-to-cell chan-
nels that facilitate the cytoplasmic exchange of ions, second
messengers, and small (<1 kDa) metabolites (reviewed in [45]).
Each gap-junction channel is composed of two hemi-chan-
nels, or connexons, which dock in the extracellular space be-
tween adjacent cells, and each connexon is comprised of six
integral transmembrane protein subunits known as connexins.
At least twenty genes for connexins of varying molecular mass
(26-62 kDa) have been identified in the human genome and,
in addition to GJA3 and GJA8, at least six other connexins
have been associated with human disease, including Charcot-
Marie-Tooth neuropathy (GJB1) on Xq [46], oculodentodigital
dysplasia (GJA1) on 6q [47], and various skin and/or hearing
disorders (GJB2, GJB3, GJB4, and GJB6) mapping to 1p and
13q (reviewed in [48] and [49]). In this study we have mapped
non-syndromic autosomal dominant cataracts to chromosome
13q and identified a novel mutation in GJA3 associated with
“nuclear punctate” lens opacities.
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Purpose: Autosomal dominant cataracts are a clinically and genetically heterogeneous eye-lens disorder that usually
present in childhood with symptoms of impaired vision. The purpose of this study was to map and identify the mutation
underlying autosomal dominant nuclear punctate cataracts segregating in a six generation Caucasian pedigree.
Methods: Genomic DNA was prepared from blood leucocytes, genotyping was performed using microsatellite markers,
and LOD scores were calculated using the LINKAGE programs. Mutation detection was performed using direct sequenc-
ing and restriction fragment length analysis.
Results: Significant evidence of linkage was obtained at marker D13S175 (LOD score [Z]=4.11, recombination fraction
[θ]=0.0) and haplotyping indicated that the disease gene lay in the about 2 Mb physical interval between D13S1316 and
D13S1236, which contained the gene for gap-junction protein α3 (GJA3) or connexin46. Sequencing of GJA3 detected a
C->T transition in exon 2 that resulted in the gain of an Alu 1 restriction site and was predicted to cause a conservative
substitution of proline to leucine at codon 59 (P59L). Restriction analysis confirmed that the novel Alu 1 site co-segre-
gated with cataracts in the family but was not detected in a control panel of 170 normal unrelated individuals.
Conclusions: The present study has identified a fifth mutation in GJA3, rendering this connexin gene one of the most
common non-crystallin genes associated with autosomal dominant cataracts in humans.
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METHODS
Genotyping and linkage analysis:  This study was approved
by the institutional review board at Washington University
School of Medicine and all participants provided informed
consent prior to enrollment. Genomic DNA was extracted from
peripheral blood leukocytes using the QIAamp DNA blood
maxi kit (Qiagen, Valencia, CA). Microsatellite (CA)n repeat
markers from the Généthon map [50] and the Marshfield ge-
netic database were amplified using the polymerase chain re-
action (PCR) and detected using a Li-Cor 4200 DNA analyzer

©2004 Molecular VisionMolecular Vision 2004; 10:376-382 <http://www.molvis.org/molvis/v10/a47>

TABLE  1. PCR PRIMERS FOR MUTATION  SCREENING OF GJA3

   Location       Strand        Sequence (5'-3')
--------------   ---------   ----------------------
5' non-coding    Sense       TGCGGACCCGGCACTCAGC
Codons 223-229   Antisense   CTTCTTCCAGCCCAGGTGGTA
Codons 29-36     Sense       CTGTTCATCTTCCGCATTTTGG
Codons 96-103    Antisense   TCCATGCGCACGATGTGCAGCA
Codons 182-189   Sense       ACCGCTGGCCCTGCCCCAACAC
3' non-coding    Antisense   TCTTCTTCCAGCCCAGGTGGTA

Primer pairs used for amplification and sequencing of the coding
exon for GJA3 located on 13q.

Figure 1. Photograph of punctate nuclear cataract.  Photograph of
punctate nuclear lens opacities in individual V1:4 from the pedigree
(Figure 2, arrow) prior to surgery at about 3 months of age. The opaci-
ties appear as dark specks in the retinal red reflex.

Figure 2. Cataract pedigree and haplotype analysis.  Pedigree and haplotype analysis of the cataract family showing segregation of four
microsatellite markers on chromosome 13q, listed in descending order from the centromere. Squares and circles symbolize males and females,
respectively. Filled symbols denote affected status.
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running Gene ImagIR software (Li-Cor, Lincoln, NE) as de-
scribed previously [28]. Pedigree and haploptype data were
managed using Cyrillic (version 2.1) software (FamilyGenetix
Ltd., Reading, United Kingdom) and two-point LOD scores
(Z) calculated using the MLINK sub-program from the LINK-
AGE (version 5.1) package of programs [51]. Microsatellite
marker allele frequencies used for linkage analysis were those
calculated by Généthon [50]. A gene frequency of 0.0001 and
a penetrance of 100% were assumed for the disease locus.

Mutation analysis:  Genomic sequence for GJA3 was ob-
tained from the Ensembl human genome browser and gene
specific PCR primers were designed to anneal to coding re-

gions and immediate 5' or 3' flanking, non-coding regions
(Table 1). Genomic DNA (50-100 fmol) was PCR amplified
with gene specific primers (25 pmol) for 35 standard cycles
using a Peltier Thermal Cycler (PTC-200) DNA engine (MJ
Research, Waltham, MA). PCR products were sized on 2%
agarose gels containing 0.05% ethidium bromide (EtBr), vi-
sualized with a UV transilluminator, then purified using the
QIAquick gel-extraction kit (Qiagen), and direct sequenced
in both directions using the dye-terminator cycle-sequencing
(DTCS) quick start kit on a CEQ8000 capillary-based genetic
analysis system (Beckman-Coulter, Fullerton, CA). Restric-
tion fragment length analysis was performed on gel-purified
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Figure 3. Mutation analysis of GJA3.  Mutation analysis of GJA3. Sequence chromatograms of wild type allele (A) showing translation of
proline (CCG) at codon 59 in exon 2 and mutant allele (B) showing a C->T transition at the second base of codon 59 that substituted leucine
(CTG) for proline (P59L). C: Restriction fragment length analysis on agarose gels showing gain of an Alu 1 site (5’AG/CT) that co-segregated
with affected individuals heterozygous for the mutant T-allele (130 bp and 92 bp) but not with unaffected individuals homozygous for the
wild-type C-allele (222 bp). The letter “M” designates the 50 bp size ladder. D: Exon organization and mutation profile of GJA3. The entire
coding region (435 amino acids) of connexin46 (Cx46) is located in a single exon. Based on hydrophobicity analysis [66], Cx46 has nine
structural domains including a cytoplasmic amino-terminus (NT), 4 transmembrane domains (M1-M4), 2 extracellular loops (E1-E2), a
cytoplasmic loop (CL), and a cytoplasmic carboxy-terminus (CT). The relative locations, with respect to the translation start codon, of the
P59L mutation and three other mutations associated with dominant cataracts in humans are indicated. E: Amino acid sequence alignment of
the E1 domain (codons 42-71) from human Cx46 and homologs from other species. Dots denote identical amino acids. Cysteine residues
involved in connexon hemi-channel docking are in blue. The P59L and N63S substitutions are shown in red.

E:

                                    L   S
                                    |   |
                                    59  63
                                    |   |
Human Cx46         EDVWGDEQSDFTCNTQQPGCENVCYDRAFP
Rat Cx46           .E............................
Mouse Cx46         .E............................
Bovine Cx44        .E............................
Sheep Cx44         .E............................
Chicken Cx56       .E........................K...
Zebrafish Cx48.5   .E........................E...

TABLE  2. TWO-POINT LOD SCORES FOR LINKAGE  BETWEEN THE CATARACT  LOCUS AND CHROMOSOME 13 MARKERS

                                               Z(θ)
                             ---------------------------------------
  Marker       cM     Mb     0.00   0.05   0.10   0.20   0.30   0.40   Z(max)   θ(max)
-----------   ----   -----   ----   ----   ----   ----   ----   ----   ------   ------
D13S1316      0      18.48    -∞    3.80   3.58   2.79   1.81   0.78    3.80     0.04
GJA3 (C->T)          18.51   7.41   6.81   6.19   4.83   3.32   1.65    7.41     0.00
D13S175       6.03   18.65   4.11   3.66   3.19   2.23   1.26   0.43    4.11     0.00
D13S1236      6.17   20.49    -∞    1.25   1.24   0.92   0.55   0.22    1.27     0.07
D13S1275      6.99   20.75    -∞    1.96   2.34   2.12   1.44   0.57    2.36     0.12

Two-point LOD scores (Z) for linkage between the cataract locus and four markers on 13q listed in genetic (sex-averaged) order Marshfield
genetic database and physical order (UCSC Genome Bioinformatics) from p-tel, measured in centi-Morgans (cM) and megabases (Mb),
respectively. The marker D13S1236 has been placed according to genetic location on the deCODE map [53], rather than the integrated
Généthon-Marshfield map (2.77 cM).
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PCR products, amplified with sense and antisense primers
(Table 1) for codons 29-36 and 96-103, respectively, using
Alu 1 at 37 °C for 1 h according to the manufacturer’s instruc-
tions (Roche, Indianapolis, IN). Digestion products were ana-
lyzed on 2% agarose/0.05% EtBr gels. In order to distinguish
the predicted mutation (with 95% confidence) from a poly-
morphism with 1% frequency we extended our Alu 1 restric-
tion analysis to include genomic DNA samples from a panel
of 170 unrelated control individuals as recommended previ-
ously [52].

RESULTS
13q linkage analysis:  We studied a six generation Caucasian
American family that segregated autosomal dominant cata-
racts in the absence of other ocular or systemic abnormalities.
Ophthalmic records indicated that the cataracts were bilateral
with coarse punctate opacities located in the central or nuclear
region of the lens (Figure 1). The mean age at diagnosis was
4.7 years (range, birth-18 years), and the mean age at surgery
was 8.6 years (range, 0-49 years).

Twenty-five members of the family (Figure 2), including
fifteen affected individuals, seven unaffected individual, and
three spouses were genotyped with microsatellite markers at
eleven known loci for autosomal dominant cataracts on chro-
mosomes 1q (GJA8), 2q (CRYGC and CRYGD), 3q (BFSP2),
11q (CRYAB), 12q (MIP), 13q (GJA3), 16q (HSF4), 17q
(CRYBA3/A1), 19q (LIM2), 21q (CRYAA), and 22q (CRYBB1
and CRYBB2). Following exclusion of ten of these loci (Z<-
1.0, θ=0.0-0.1), we obtained significant evidence of linkage
(Table 2) for marker D13S175 (Z=4.11, θ=0) on 13q11-q12.

Haplotyping of the pedigree (Figure 2) detected two af-
fected males (IV:3, IV:5) who were obligate recombinants at
D13S1275 and one affected male (V:4) who was recombinant
at D13S1316. Apart from individual IV:5, no recombinant in-
dividuals were detected at two other intervening markers sug-
gesting that the disease locus lay in the genetic interval,
D13S1316-(2.77 cM)-D13S1236-(3.26 cM)-D13S175-(0.96
cM)-D13S1275 defined by the integrated Généthon-
Marshfield maps. However, individual IV:5 was also recom-
binant at D13S1236 but not at D13S175 or D13S1316, sug-
gesting that either a double recombination event had occurred
or that marker order was inaccurate. Consistent with the lat-
ter, the deCODE genetic map [53] placed D13S1236 over 6
cM distal to D13S1316 and the chromosome 13 physical map
(UCSC Genome Bioinformatics and Ensembl), placed
D13S1236 between D13S175 and D13S1275 (Table 2), indi-
cating that the disease locus lay in the physical interval,
D13S1316-(0.17 Mb)-D13S175-(1.84 Mb)-D13S1236. Sig-
nificantly, D13S1316 and D13S175 lie about 30 kb proximal
and about 130 kb distal to GJA3, respectively, suggesting that
the latter was a strong candidate gene for the cataract.

GJA3 mutation analysis: According to the human genome
browser, GJA3 comprises one coding exon (Figure 3D). Se-
quence analysis of the entire coding region and immediate
flanking regions in two affected individuals using GJA3 spe-
cific primers (Table 1), detected a heterozygous C->T transi-
tion that was present in both of the affected individuals but

©2004 Molecular VisionMolecular Vision 2004; 10:376-382 <http://www.molvis.org/molvis/v10/a47>

not in either of the unaffected individuals (Figure 3A and Fig-
ure 3B). This single nucleotide change resulted in the gain of
an Alu 1 restriction site (5’AG/CT) and restriction fragment
length analysis confirmed the presence of the heterozygous
C->T transition in all affected members of the pedigree and
its absence in unaffected relatives and spouses (Figure 3C).
Furthermore, when we tested the C->T transition as a bi-al-
lelic marker, with a notional allelic frequency of 1%, in a two-
point LOD score analysis of the cataract locus (Table 2) we
obtained significant evidence of linkage (Z=7.41, θ=0). Fi-
nally, we excluded the C->T transition as a single nucleotide
polymorphism (SNP) in a panel of 170 normal unrelated indi-
viduals (data not shown).

At the level of protein translation, the C->T transition was
predicted to result in a missense substitution of proline to leu-
cine at codon 59 (P59L). This is considered a relatively con-
servative substitution of one non-polar hydrophobic residue
for another, however, alignment of amino acid sequences for
GJA3 present in the Protein database using the BLAST algo-
rithm [54] revealed that proline 59 is phylogenetically con-
served from zebrafish to man (Figure 3E). Taken overall, the
co-segregation of the C->T transition only with affected mem-
bers of the pedigree and its absence in 340 normal chromo-
somes strongly suggested that the P59L substitution was a
causative mutation rather than a benign SNP in linkage dis-
equilibrium with the disease.

DISCUSSION
GJA3 encodes a lens abundant connexin of molecular mass
about 46 kDa (Cx46) that functions in gap-junction commu-
nication between elongated fiber cells [55], which constitute
the bulk of the lens mass and represent the target cells for
cataract formation. Previous studies have identified three mis-
sense mutations (F32L, N63S, P187L) and an insertion muta-
tion (1137insC), which resulted in a reading frame shift at
codon 380 (S380fs), associated with autosomal dominant punc-
tate cataracts segregating in extended pedigrees of English
[42,56], Welsh [43,57], and Chinese [44] ancestry. Here we
have identified a fifth mutation in GJA3 linked with autoso-
mal dominant nuclear punctate cataracts segregating in a six
generation Caucasian American family.

Clinical descriptions of GJA3 related cataracts share sev-
eral genotype-phenotype similarities but also exhibit certain
inter- and intra-familial differences with respect to the physi-
cal appearance and location of opacities within the juvenile
lens. Thus, the F32L mutation [44] was associated with pul-
verulent (dust-like) or punctate opacities limited to the central
(about 2 mm) zone or “embryonic nucleus” of the lens. Punc-
tate opacities associated with the S380fs mutation [42] and
the P59L mutation reported here, appeared coarse and granu-
lar located within the central zone (fetal nucleus) of the lens,
with the former mutation also exhibiting a predominance fine
dust-like opacities in the peripheral zone (juvenile cortex) of
the lens. The N63S mutation [42,56] was also associated with
fine dust-like opacities, which in some individuals formed a
“zonular” or “lamellar” distribution with a clear peripheral
cortex and minimal involvement of the central nucleus of the

379



lens. Others had more widely spread dust-like opacities ex-
tending into the cortex with no demarcation of the nucleus,
and in very mild cases the dust-like opacities were clustered
around the anterior and posterior “Y” shaped sutures of the
lens fetal nucleus. Finally, the P187L opacities [43] were also
described as central pulverulent affecting the embryonal, fe-
tal, and infantile lens nuclei. However, they were surrounded
by snowflake-like opacities in the anterior and posterior corti-
cal region of the lens and also involved the posterior sub-cap-
sular region.

Currently, no dominant spontaneous or mutagen induced
cataracts have been associated with the murine gene for GJA3
(Gja3), and Gja3 appears to map about 6 cM proximal to two
potentially allelic recessive mutations, rupture of lens cata-
ract (rlc) and lens rupture 2 (lr2), which have been mapped to
the mid-region of murine chromosome 14 [58,59]. However,
mice homozygous for targeted disruption of Gja3 have been
shown to develop severe nuclear cataracts associated with γ-
crystallin proteolysis [60]. The severity of the murine cata-
racts on a 129SvJ genetic background was found to be signifi-
cantly reduced on a C57BL/6J background [61], suggesting
the phenotype was influenced by genetic modifiers, which may
also contribute to the inter- and intra-familial variation ob-
served in human GJA3 related cataracts. Electrophysiological
studies of lenses from Gja3 null mice have revealed that the
mature terminally differentiated fibers within the opaque
nucleus are not only uncoupled from each other but also from
the surrounding peripheral fibers undergoing terminal differ-
entiation within the clear outer cortex [62]. Moreover, genetic
replacement of the coding region for gap-junction protein α8
(Gja8), or connexin50 (Cx50, the other abundant lens fiber
connexin), with the Cx46 coding region by targeted knock-in
prevented the lens opacities but not the lens growth defect
characteristic of Gja8 null mice [63]. These observations sug-
gest that Cx46 plays a critical role in maintaining lens trans-
parency, particularly within the nucleus.

Functional expression studies have demonstrated that wild
type human Cx46 can form gap-junction channels in paired
Xenopus oocytes and hemi gap-junction channels (connexons)
in single oocytes [64]. Beyond gap-junction formation the
physiological function of Cx46 hemi-channels in the lens is
unclear. However in oocytes, they have been shown to open
in response to membrane depolarization (voltage-sensitive)
and reduced extracellular calcium concentrations in a manner
similar to orthodox ion channels (reviewed in [65]). Based on
the hydrophobicity profile [66] of Cx46, the P59L substitu-
tion lies close to the N63S substitution [42] in the first extra-
cellular loop (E1) domain, within a phylogenetically conserved
motif of twelve amino acids containing three cysteine resi-
dues (54-CNTQQPGCENVC-65). Similarly, the P187L sub-
stitution in Cx46 [43] is located in the second extracellular
loop (E2) domain within another phylogenetically conserved
motif containing three cysteines (181-CDRWPCPNTVDC-
192). Both the E1 and E2 domains are believed to function in
docking of connexon hemi-channels (connexin hexamers) via
cysteine-cysteine disulfide bridges in the intercellular space
[67], to form gap-junction channels (connexin dodecamers)

and, conceivably, mutations in these extracellular domains may
impair Cx46 mediated coupling of lens fiber cells triggering
lens opacities. Consistent with a loss of hemi-channel dock-
ing ability, the N63S mutant failed to form gap-junction chan-
nels when expressed in paired Xenopus oocytes [64]. More-
over, the N63S mutant did not exert strong dominant negative
inhibitory effects when co-expressed with its wild type coun-
terpart in oocytes, consistent with a loss-of-function mecha-
nism and suggesting that a lower threshold level of Cx46 func-
tion is required for maintaining lens transparency [64]. How-
ever, heterozygous loss of Cx46 was not sufficient to elicit
lens opacities in mice [60] indicating that, in addition to loss
of function effects detected in oocytes, there may be deleteri-
ous gain-of-function mechanisms associated with expression
of Cx46 mutants in the lens. Interestingly, the N63S mutant
also exhibited impaired ability to form hemi gap-junction chan-
nels in single oocytes [64]. These observations raise the pos-
sibility that the primary genetic defect operated at the connexin
(monomer) level prior to connexon (hexamer) formation, per-
haps as a result of impaired targeting to the cell surface, accel-
erated degradation, or both. Whether or not the P59L mutant
reported here malfunctions in a manner similar to that of the
N63S mutant remains to be established.
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