30 research outputs found

    Superhumps in Cataclysmic Binaries. XXII. 1RXS J232953.9+062814

    Full text link
    We report photometry of 1RXS J232953.9+062814, a recently discovered dwarf nova with a remarkably short 64.2-minute orbital period. In quiescence, the star's light curve is that of a double sinusoid, arising from the "ellipsoidal" distortion of the Roche-lobe-filling secondary. During superoutburst, common superhumps develop with a period 3-4% longer than P_orb. This indicates a mass ratio M_2/M_1=0.19+-0.02, a surprisingly large value in so compact a binary. This implies that the secondary star has a density 2-3 times higher than that of other short-period dwarf novae, suggesting a secondary enriched by H-burning prior to the common-envelope phase of evolution. We estimate i=50+-5 deg, M_1=0.63 (+0.12, -0.09) M_sol, M_2=0.12 (+0.03, -0.02) M_sol, R_2=0.121 (+0.010, -0.007) R_sol, and a distance to the binary of 180+-40 pc.Comment: PDF, 17 pages, 3 tables, 5 figures; accepted, in press, to appear June 2002, PASP; more info at http://cba.phys.columbia.edu

    Superhump Evolution in the Ultrashort Period Dwarf Nova 1RXS J232953.9+062814

    Get PDF
    Abstract We report on the evolution of superhumps and late superhumps in an ultrashort period dwarf nova, 1RXS J232953.9++062814, during the superoutburst in 2001 November. Ordinary superhumps were observed throughout a plateau phase, a rapid fading phase, and a rebrightening phase. During the plateau phase, the superhump period increased with time at a large rate of Pdot=1.19±0.24×104P_\mathrm{dot} = 1.19 \pm 0.24 \times 10^{-4}. In conjunction with the rebrightening phenomenon, these characteristics indicate that an accretion disk expanded further outward from the 3:13:1 resonance radius, which caused a large amount of left over matter at the outer disk, even after the superoutburst. In the post-outburst phase, we detected late superhumps superimposed on dominant double-peak modulations. Late superhumps were observed at least for 10 d without a significant period change. We detected the first normal outburst of this object on 2001 December 26. The interval between the superoutburst and this normal one is 53 d. This short recurrence time supports a high mass-transfer rate in this system. Concerning the evolutionary status of 1RXS J232953.9++062814, we propose that it is a progenitor of AM CVn stars on the evolutionary course of the cataclysmic variable channel in which systems have a secondary star with a hydrogen-exhausted core

    Planetary Transits of the Trans-Atlantic Exoplanet Survey- Candidate TrES-1b

    Full text link
    The AAVSO compiled 10,560 CCD observations of the suspected exoplanet transit object TrES-1b covering seven complete transit windows, three windows of partial coverage, and coverage of baseline non-transit periods. Visual inspection of the light curves reveals the presence of slight humps at the egress points of some transits. A boot strap Monte Carlo simulation was applied to the data to confirm that the humps exist to a statistically significant degree. However, it does not rule out systemic effects which will be tested with campaigns in the 2005 observing season

    IM Normae: The Death Spiral of a Cataclysmic Variable?

    Full text link
    We present a study of the orbital light curves of the recurrent nova IM Normae since its 2002 outburst. The broad "eclipses" recur with a 2.46 hour period, which increases on a timescale of 1.28(16)x10^6 years. Under the assumption of conservative mass-transfer, this suggests a rate near 10^-7 M_sol/year, and this agrees with the estimated /accretion/ rate of the postnova, based on our estimate of luminosity. IM Nor appears to be a close match to the famous recurrent nova T Pyxidis. Both stars appear to have very high accretion rates, sufficient to drive the recurrent-nova events. Both have quiescent light curves which suggest strong heating of the low-mass secondary, and very wide orbital minima which suggest obscuration of a large "corona" around the primary. And both have very rapid orbital period increases, as expected from a short-period binary with high mass transfer from the low-mass component. These two stars may represent a final stage of nova -- and cataclysmic-variable -- evolution, in which irradiation-driven winds drive a high rate of mass transfer, thereby evaporating the donor star in a paroxysm of nova outbursts.Comment: PDF, 30 pages, 3 tables, 6 figures; accepted, in press, ApJ; more info at http://cbastro.org

    The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Get PDF
    We present the results of a transcontinental campaign to observe the 2009 June 5 transit of the exoplanet HD 80606b. We report the first detection of the transit ingress, revealing the transit duration to be 11.64 +/- 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. The Keck data show that the projected spin-orbit angle is between 32-87 deg with 68.3% confidence and between 14-142 deg with 99.73% confidence. Thus the orbit of this planet is not only highly eccentric (e=0.93), but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism. Independently of the theory, it is noteworthy that all 3 exoplanetary systems with known spin-orbit misalignments have massive planets on eccentric orbits, suggesting that those systems migrate differently than lower-mass planets on circular orbits.Comment: ApJ, in press [13 pg
    corecore