134 research outputs found

    Hierarchical LSTM with Adjusted Temporal Attention for Video Captioning

    Full text link
    Recent progress has been made in using attention based encoder-decoder framework for video captioning. However, most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., "gun" and "shooting") and non-visual words (e.g. "the", "a"). However, these non-visual words can be easily predicted using natural language model without considering visual signals or attention. Imposing attention mechanism on non-visual words could mislead and decrease the overall performance of video captioning. To address this issue, we propose a hierarchical LSTM with adjusted temporal attention (hLSTMat) approach for video captioning. Specifically, the proposed framework utilizes the temporal attention for selecting specific frames to predict the related words, while the adjusted temporal attention is for deciding whether to depend on the visual information or the language context information. Also, a hierarchical LSTMs is designed to simultaneously consider both low-level visual information and high-level language context information to support the video caption generation. To demonstrate the effectiveness of our proposed framework, we test our method on two prevalent datasets: MSVD and MSR-VTT, and experimental results show that our approach outperforms the state-of-the-art methods on both two datasets

    White Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescence Emitters

    Get PDF
    Recently, thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) have attracted both academic and industrial interest due to their extraordinary characteristics, such as high efficiency, low driving voltage, bright luminance, lower power consumption, and potentially long lifetime. In this chapter, various approaches to realize white OLEDs (WOLEDs) with TADF emitters have been introduced. The recent development of WOLEDs based on all TADF emitters, WOLEDs based on TADF and conventional fluorescence emitters, and WOLEDs based on TADF and phosphorescence emitters is highlighted. Particularly, the device structures, design strategies, working mechanisms, and electroluminescent processes of the representative high-performance WOLEDs with TADF emitters are reviewed. Moreover, challenges and opportunities for further enhancement of the performance of WOLEDs with TADF emitters are presented

    Preliminary Functional-Structural Modeling on Poplar (Salicaceae)

    Get PDF
    Poplar is one of the best fast-growing trees in the world, widely used for windbreak and wood product. Although architecture of poplar has direct impact on its applications, it has not been descried in previous poplar models, probably because of the difficulties raised by measurement, data processing and parameterization. In this paper, the functional-structural model GreenLab is calibrated by using poplar data of 3, 4, 5, 6 years old. The data was acquired by simplifying measurement. The architecture was also simplified by classifying the branches into several types (physiological age) using clustering analysis, which decrease the number of parameters. By multi-fitting the sampled data of each tree, the model parameters were identified and the plant architectures at different tree ages were simulated

    FATIGUE DAMAGE EVALUATION OF TURBINE GENERATOR DUE TO MULTI-MODE SUBSYNCHRONOUS OSCILLATION

    Get PDF
    ABSTRACT In recent years, Subsynchronous Resonance (SSR) and Subsynchronous Oscillation (SSO) are increasingly attracting more and more researchers' interests in China. The network is encountering great changes and large-scale networks are increasingly implemented for long distance power transmission as well as various kinds of power electronic devices. Several SSO phenomena were monitored in a fossil-fired power plant in China in 2008. They were determined as complex factors' co-activation between the network and the turbine generator. Multi-mode torsional vibration is one significant feature of torsional vibration caused by SSO. The paper simulates the multi-mode SSO based on the practical situation in China. The torsional vibration is studied to analyze the torsional vibration features under multimode SSO and the differences caused by different peak values and phases of electromagnetic torques. Based on some type of 600MW steam turbine generator, the fatigue damage of the shafts is studied

    Growth and development simulation based on functional-structural model GreenLab for poplar (Salicaceae)

    Get PDF
    International audiencePoplar (salicaceae) is one of the widest planted fast-growing trees in the world. It is not only used for timber, but also used as windbreak and ecological protection of forest widely. The architecture of poplar has direct impact on poplar's growth and applications, but poplar's architecture still has not been discussed deeply in previous poplar models because of the difficulties raised by measurement, data processing and parameterization. This paper aimed to collect the biomass and architecture data of poplars of different ages, and construct the functional-structural model of poplar based on GreenLab. The selected poplar variety was poplar 107 (Populus × euramericana cv. Neva). The biomass and architecture data were collected from four trees with 3, 4, 5 and 6 years old, respectively. The architecture was simplified by classifying the branches into several types (physiological age) according to the length and size. Based on GreenLab model, some parameters were obtained and some strong correlation coefficients were got. The comparison between the measured and simulated results was given for the trunk data of all trees. The topological structures of poplar at different tree ages were reconstructed. This paper was a exploration of poplar growth simulation based on GreenLab model, and was a good reference in the Functional-Structural model construction of complex trees
    • …
    corecore