56 research outputs found

    The stochastic container relocation problem with flexible service policies

    Get PDF
    This paper investigates the Stochastic Container Relocation Problem in which a flexible service policy is adopted in the import container retrieval process. The flexible policy allows the terminal operators to determine the container retrieval sequence to some extent, which provides more opportunity for reducing the number of relocations and the truck waiting times. A more general probabilistic model that captures customers’ arrival preference is presented to describe the randomness for external truck arrivals within their appointed time windows. Being a multi-stage stochastic sequential decision-making problem, it is first formulated into a stochastic dynamic programming (SDP) model to minimize the expected number of relocations. Then, the SDP model is extended considering a secondary objective representing the truck waiting times. Tree search-based algorithms are adapted to solve the two models to their optimality. Heuristic algorithms are designed to seek high-quality solutions efficiently for larger problems. A discrete-event simulation model is developed to evaluate the optimal solutions and the heuristic solutions respectively on two performance metrics. Extensive computational experiments are performed based on instances from literature to verify the effectiveness of the proposed models and algorithms

    Antibacterial activity of isopropoxy benzene guanidine against Riemerella anatipestifer

    Get PDF
    Introduction:Riemerella anatipestifer (R. anatipestifer) is an important pathogen in waterfowl, leading to substantial economic losses. In recent years, there has been a notable escalation in the drug resistance rate of R. anatipestifer. Consequently, there is an imperative need to expedite the development of novel antibacterial medications to effectively manage the infection caused by R. anatipestifer.Methods: This study investigated the in vitro and in vivo antibacterial activities of a novel substituted benzene guanidine analog, namely, isopropoxy benzene guanidine (IBG), against R. anatipestifer by using the microdilution method, time-killing curve, and a pericarditis model. The possible mechanisms of these activities were explored.Results and Discussion: The minimal inhibitory concentration (MIC) range of IBG for R. anatipestifer was 0.5–2 μg/mL. Time-killing curves showed a concentration-dependent antibacterial effect. IBG alone or in combination with gentamicin significantly reduced the bacterial load of R. anatipestifer in the pericarditis model. Serial-passage mutagenicity assays showed a low probability for developing IBG resistance. Mechanistic studies suggested that IBG induced membrane damage by binding to phosphatidylglycerol and cardiolipin, leading to an imbalance in membrane potential and the transmembrane proton gradient, as well as the decreased of intracellular adenosine triphosphate. In summary, IBG is a potential antibacterial for controlling R. anatipestifer infections

    Industrial and agricultural wastes decreased greenhouse-gas emissions and increased rice grain yield in a subtropical paddy field

    Get PDF
    Imbalance P paper. Contact with Jordi Sardans: [email protected] the emissions of greenhouse gases (GHG) from paddy fields is crucial both for the sustainability of rice production and mitigation of global climatic warming. The effects of applying industrial and agricultural wastes as fertilizer on the reduction of GHG emissions in cropland areas, however, remain poorly known. We studied the effects of the application of 8 Mg ha⁻¹ of diverse wastes on GHG emission and rice yield in a subtropical paddy in southeastern China. Plots fertilized with steel slag, biochar, shell slag, gypsum slag and silicate and calcium fertilizer had lower total global-warming potentials (GWP, including CO₂, CH₄ and N₂O emissions) per unit area than control plots without waste application despite non-significant differences among these treatments. Structural equation models showed that the effects of these fertilization treatments on gas emissions were partially due to their effects on soil variables, such as soil water content or soil salinity. Steel slag, biochar and shell slag increased rice yield by 7.1%, 15.5% and 6.5%, respectively. The biochar amendment had a 40% lower GWP by Mg⁻¹ yield production, relative to the control. These results thus encourage further studies of the suitability of the use waste materials as fertilizers in other different types of paddy field as a way to mitigate GHG emissions and increase crop yield

    Pharmacokinetics and Pharmacodynamics of Tildipirosin Against in a Murine Lung Infection Model

    No full text
    Tildipirosin, a 16-membered-ring macrolide antimicrobial, has recently been approved for the treatment of swine respiratory disease and bovine respiratory disease. This macrolide is extensively distributed to the site of respiratory infection followed by slow elimination. Clinical efficacy has been demonstrated in cattle and swine clinical field trials. However, the pharmacokinetic/pharmacodynamic (PK/PD) index that best correlates with the efficacy of tildipirosin remains undefined. The objective of this study was to develop a PK/PD model following subcutaneous injection of tildipirosin against Pasteurella multocida in a murine lung infection model. The PK studies of unbound (f) tildipirosin in plasma were determined following subcutaneous injection of single doses of 1, 2, 4, 6, and 8 mg/kg of body weight in neutropenic lung-infected mice. The PD studies were conducted over 24 h based on twenty intermittent dosing regimens, of which total daily dose ranged from 1 to 32 mg/kg and dosage intervals included 6, 8, 12, and 24 h. The minimum inhibitory concentration (MIC) of tildipirosin against P. multocida was determined in serum. The inhibitory effect Imax model was employed for PK/PD modeling. The area under the unbound concentration-time profile over 24 h to MIC (fAUC0-24 h/MIC) was the PK/PD index that best described the antibacterial activity in the murine infection model. The fAUC0-24 h/MIC targets required to achieve the bacteriostatic action, a 1-log10 kill and 2-log10 kill of bacterial counts were 19.93, 31.89, and 53.27 h, respectively. These results can facilitate efforts to define more rational designs of dosage regimens of tildipirosin using classical PK/PD concepts for the treatment of respiratory diseases in pigs and cattle

    Experimental Investigation on Surface Quality Processed by Self-Excited Oscillation Pulsed Waterjet Peening

    No full text
    High-speed waterjet peening technology has attracted a lot of interest and is now being widely studied due to its great ability to strengthen metal surfaces. In order to further improve the mechanical properties of metals, self-excited oscillation pulsed waterjets (SOPWs) were used for surface peening with an experimental investigation focused on the surface topography and properties. By impinging the aluminum alloy (5052) specimens with SOPWs issuing from an organ-pipe oscillation nozzle, the hardness and roughness at various inlet pressures and stand-off distances were measured and analyzed, as well as the residual stress. Under the condition of optimum stand-off distances, the microscopic appearances of peened specimens obtained by SEM were displayed and analyzed. Results show that self-excited oscillation pulsed waterjet peening (SOPWP) is capable of improving the surface quality. More specifically, compared with an untreated surface, the hardness and residual stress of the peened surfaces were increased by 61.69% and 148%, respectively. There exists an optimal stand-off distance and operating pressure for creating the highest surface quality. SOPWP can produce almost the same enhancement effect as shot peening and lead to a lower surface roughness. Although such an approach is empirical and qualitative in nature, this procedure also generated information of value in guiding future theoretical and experimental work on the application of SOPWP in the industry practice

    Pharmacokinetics of Mequindox and Its Marker Residue 1,4-Bisdesoxymequindox in Swine Following Multiple Oral Gavage and Intramuscular Administration : An Experimental Study Coupled with Population Physiologically Based Pharmacokinetic Modeling

    No full text
    Mequindox (MEQ) is a quinoxaline-N,N-dioxide antibiotic used in food-producing animals. MEQ residue in animal-derived foods is a food safety concern. The tissue distribution of MEQ and its marker residue 1,4-bisdesoxymequindox (M1) were determined in swine following oral gavage or intramuscular injection twice daily for 3 days. The experimental data were used to construct a flow-limited physiologically based pharmacokinetic (PBPK) model. The model predictions correlated with available data well. Monte Carlo analysis showed that the times needed for M1 concentrations to fall below limit of detection (5 μg/kg) in liver for the 99th percentile of the population were 27 and 34 days after oral gavage and intramuscular administration twice daily for 3 days, respectively. This population PBPK model can be used to predict depletion kinetic profiles and tissue residues of MEQ's marker residue M1 in swine and as a foundation for scaling to other quinoxaline-N,N-dioxide antibiotics and to other animal species

    Pharmacokinetics of Mequindox and Its Marker Residue 1,4-Bisdesoxymequindox in Swine Following Multiple Oral Gavage and Intramuscular Administration : An Experimental Study Coupled with Population Physiologically Based Pharmacokinetic Modeling

    No full text
    Mequindox (MEQ) is a quinoxaline-N,N-dioxide antibiotic used in food-producing animals. MEQ residue in animal-derived foods is a food safety concern. The tissue distribution of MEQ and its marker residue 1,4-bisdesoxymequindox (M1) were determined in swine following oral gavage or intramuscular injection twice daily for 3 days. The experimental data were used to construct a flow-limited physiologically based pharmacokinetic (PBPK) model. The model predictions correlated with available data well. Monte Carlo analysis showed that the times needed for M1 concentrations to fall below limit of detection (5 μg/kg) in liver for the 99th percentile of the population were 27 and 34 days after oral gavage and intramuscular administration twice daily for 3 days, respectively. This population PBPK model can be used to predict depletion kinetic profiles and tissue residues of MEQ's marker residue M1 in swine and as a foundation for scaling to other quinoxaline-N,N-dioxide antibiotics and to other animal species

    Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film

    No full text
    The effects of UV-ozone (UVO) treatment on the sensing behaviours of extended-gate field-effect transistors (EGFETs) that use Al2O3 as the sensing film have been investigated. The Al2O3 sensing films are UVO-treated with various duration times and the corresponding EGFET sensing behaviours, such as sensitivity, hysteresis, and long-term stability, are electrically evaluated under various measurement conditions. Physical analysis is also performed to characterize the surface conditions of the UVO-treated sensing films using X-ray photoelectron spectroscopy and atomic force microscopy. It is found that UVO treatment effectively reduces the buried sites in the Al2O3 sensing film and subsequently results in reduced hysteresis and improved long-term stability of EGFET. Meanwhile, the observed slightly smoother Al2O3 film surface post UVO treatment corresponds to decreased surface sites and slightly reduced pH sensitivity of the Al2O3 film. The sensitivity degradation is found to be monotonically correlated with the UVO treatment time. A treatment time of 10 min is found to yield an excellent performance trade-off: clearly improved long-term stability and reduced hysteresis at the cost of negligible sensitivity reduction. These results suggest that UVO treatment is a simple and facile method to improve the overall sensing performance of the EGFETs with an Al2O3 sensing film
    corecore