Short title: Using wastes to reduce greenhouse-gas emissions

3 INDUSTRIAL AND AGRICULTURAL WASTES DECREASED 4 GREENHOUSE-GAS EMISSIONS AND INCREASED RICE GRAIN YIELD IN 5 A SUBTROPICAL PADDY FIELD

By WEIQI WANG^{1,2*}, CONGSHENG ZENG^{1,2}, JORDI SARDANS^{3,4*}, DONGPING
 ZENG^{1,2}, CHUN WANG^{1,2}, MIREIA BARTRONS^{3,4}, JOSEP PEÑUELAS^{3,4}

9

18

19 20

6

1

2

¹ Institute of Geography, Fujian Normal University, Fuzhou 350007, China; ² Key 10 Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, 11 Fujian Normal University, Fuzhou 350007, China³ CSIC, Global Ecology Unit 12 CREAF- CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; ⁴ CREAF, 13 Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain;⁵ Aquatic Ecology Group, 14 BETA Tecnio Centre, University of Vic - Central University of Catalonia, Vic, 15 *Spain*; **Corresponding authors*: Email: wangweiqi15@163.com; 16 Catalonia, j.sardans@creaf.uab.cat 17

SUMMARY

Reducing the emissions of greenhouse gases (GHG) from paddy fields is crucial both 21 for the sustainability of rice production and mitigation of global climatic warming. The 22 effects of applying industrial and agricultural wastes as fertilizer on the reduction of 23 GHG emissions in cropland areas, however, remain poorly known. We studied the 24 effects of the application of 8 Mg ha⁻¹ of diverse wastes on GHG emission and rice 25 yield in a subtropical paddy in southeastern China. Plots fertilized with steel slag, 26 biochar, shell slag, gypsum slag and silicate and calcium fertilizer had lower total 27 global-warming potentials (GWP, including CO₂, CH₄ and N₂O emissions) per unit area 28 than control plots without waste application despite no significant differences among 29 these treatments. Structural equation models showed that the effects of these 30 fertilization treatments on gas emissions were partially due to their effects on soil 31 32 variables, such as soil water content or soil salinity. Steel slag, biochar and shell slag 33 increased rice yield by 7.1, 15.5 and 6.5%, respectively. The biochar amendment had a 40% lower GWP by Mg⁻¹ yield production, relative to the control. These results thus 34 encourage further studies of the suitability of the use waste materials as fertilizers in 35 other different types of paddy field as a way to mitigate GHG emissions and increase 36 crop yield. 37

38

39 *Keywords*: CH₄ flux; climate change; CO₂ flux; crop yield; biochar; gypsum slag; N₂O

- 40 flux; paddy field; pollution; shell slag; silicate and calcium fertilizer; steel slag
- 41

Post-print of: Wang, W. et al. "Industrial and agricultural wastes decreased greenhouse-gas emissions and increased rice grain yield in a subtropical paddy field" in Experimental agriculture (Cambridge Univ. Press). Published online 13 july 2017. The final versión is available at DOI 10.1017/S001447971700031X

INTRODUCTION

42 43

As rice is currently the basic food source of more than 50% of the global population, 44 rice production will need to increase by 40% by the end of 2030 to meet the demand 45 for food from the growing population worldwide (FAO, 2009). On the other hand, 46 47 agricultural activities contribute to approximately one-fifth of the present emissions of atmospheric greenhouse gases (GHGs) (Hütsch, 2001). The emissions of methane (CH₄) 48 and nitrous oxide (N₂O) from paddy fields are especially relevant (Hütsch, 2001). So 49 minimizing the GHGs from paddies is of utmost importance to mitigate their adverse 50 impacts on climate change. The application of materials such as biochar (Zhang et al., 51 2010) or steel slag (Wang et al., 2015) is widely studied for both increasing rice yields 52 53 and mitigating GHG emissions. Industrial and agricultural wastes contain high 54 concentrations of electron acceptors such as the active and free oxide forms of iron, sulphur, nitrogen and phosphorus. 55

Steel slag and biochar are particularly commonly used in crop amendment in 56 several areas of the world (Revell et al., 2012; Wang et al., 2015). Ali et al. (2008) 57 observed that steel slag application reduced CH₄ emissions in a temperate paddy field. 58 59 Biochar is also a commonly used waste product (Revell et al., 2012) and its use can reduce N₂O emissions from paddies (Zhang et al., 2010). However, biochar 60 effectiveness in mitigating CH₄ emissions has not been ever observed and depends on 61 the type of biochar (Feng et al., 2012). The effects of slag and biochar on the reduction 62 of CO₂ emissions have been less studied compared to the emissions of CH₄ and N₂O 63 from paddies. Few studies have provided an overall evaluation of the total global-64 warming potential (GWP) from the combined emission contributions of the three main 65 GWPs that are CO₂, CH₄ and N₂O (Wang et al., 2015). Waste of the steel slag and 66 silicate and calcium slag are rich in Fe. Fe is one of the controlling factors affecting the 67 68 CO₂, CH₄ and N₂O production and emission (Huang *et al.*, 2012; Wang *et al.*, 2015). The application of waste rich in Fe will increase the amount of iron plaque on the rice 69 roots limiting the transport of materials between rice roots and soil (Huang et al., 2012), 70 and thus limiting the gas release from roots to the atmosphere. Moreover, when soil 71 Fe³⁺ concentrations increase, the rate of Fe³⁺ reduction can also increase, thus also 72 73 increasing Fe^{2+} accumulation in soil (Wang *et al.*, 2015), which could inhibit microbial activity (Huang et al., 2009) and thus affect soil CO₂ and CH₄ production 74 and emission. However, the effect of Fe on the N2O production and emission is more 75 complex (Huang et al., 2009; Wang et al., 2015). Industrial and agricultural wastes are 76 77 far less commonly applied in subtropical compared to temperate paddy fields (Ali et al., 78 2008; Wang et al., 2015), and less information is available on their impacts in GHG emissions and yield in subtropical paddy fields. 79

China has the second largest area of rice cultivation in the world, and GHG emissions from rice cultivation account for about 40% of the total agricultural source of GHGs. Ninety percent of the paddies in China are in the subtropics, such as in Fujian, Jiangxi and Hunan Provinces. Developing effective strategies to increase crop yield and mitigate GHG emissions from paddies in subtropical China to minimize future problems of food shortage and adverse climate change is thus of national and globalimportance.

Previous studies reported that steel slag was an effective amendment to reduce 87 CH₄ flux and increase rice yields in a subtropical paddy in Fujian Province in China 88 over growing season (Wang et al., 2015). The effect on N₂O emissions, however, was 89 90 uncertain during the growth period of the rice crop (Wang et al., 2015). A silicate and calcium fertilizer produced from steel slag can be also useful as a chemical fertilizer 91 that does not decrease water retention (Pernes-Debuyser and Tessier, 2004). Industrial 92 and agricultural wastes represent an inexpensive and highly available potential source 93 of fertilizer that can be useful tools to increase rice yield and mitigate GHG emissions. 94 Shell slag from coastal fishing is easily obtained in large amounts in several areas of 95 China and can be used in coastal rice croplands, and thus we have included this 96 compound as fertilizer for the first time in rice crops. Gypsum slag is also produced in 97 large amounts as waste from building activities due to the rapid growth of cities in 98 China and is thus a good candidate to be used in rice croplands near cities. To reuse 99 waste in the local region is very important to solve two problems at once: reduce 100 residual accumulation and improve paddy field management. 101

Our objective was thus to obtain information for the use of waste materials to 102 mitigate GHG emissions and increase rice yield by studying the effects of the 103 104 application of various waste materials (steel slag, shell slag, biochar, gypsum slag and a silicate and calcium fertilizer produced from steel slag) under field conditions. We 105 pursued this objective by: (1) determining the response of CO₂, CH₄ and N₂O emissions 106 to the application of different types of industrial and agricultural waste in a paddy, (2) 107 108 analysing the soil variables changed by industrial and agricultural wastes that thereafter 109 were related with CO₂, CH₄ and N₂O emissions changes, and (3) assessing the impacts of the applications on crop productivity. 110

- 111
- 112
- 113 114

MATERIALS AND METHODS

115 Study site and experimental design

We studied the effect of the application of 8 Mg ha⁻¹ of steel slag, biochar, shell 116 slag, gypsum slag and a silicate and calcium fertilizer (produced from steel slag) on 117 GHG emissions and on rice yield in a subtropical paddy field in southeastern China. 118 The management (including soil plow, water management, fertilizer dosage) was the 119 typical management in subtropical paddy field of China (Wang et al., 2015). We 120 applied 8 Mg ha⁻¹ because it is an intermediate dose in the range used in other previous 121 experiments (Ali et al., 2008), and because this dose was earlier found to be the best 122 123 one for reducing GHG emission and improving rice yield in this paddy field (Wang et al., 2015). 124

Our study was conducted at the Wufeng Agronomy Field of the Fujian Academy of Agricultural Sciences in Fujian Province, southeastern China (26.1°N, 119.3°E, 40 m a.s.l) (Supplementary material Figure S1). The field experiment was carried out

during the early paddy season (16 April to 16 July) in 2014. Air temperature and 128 humidity during the studied period are shown in Figure S2. The soil of the paddy was 129 poorly drained, and the proportions of sand, silt and clay particles in the top 15 cm of 130 the soil were 28, 60 and 12%, respectively. Other properties of the top 15 cm of soil at 131 the beginning of the experiment were: bulk density, 1.1 g cm⁻³; pH (1:5 with H₂O), 6.5; 132 organic carbon (C) concentration, 18.1 g kg⁻¹; total nitrogen (N) concentration, 1.2 g 133 kg⁻¹ and total phosphorus (P) concentration, 1.1 g kg⁻¹. Crop was kept under flooding 134 from 0 to 37 days after transplanting (DAT) and water level was maintained at 5-7 cm 135 above the soil surface by an automatic water-level controller. Each plot was kept under 136 drainage between 37-44 DAT. The soil of each treatment plot was then kept under moist 137 conditions between 44-77 DAT. Finally, the paddy field was drained two weeks before 138 139 harvest (77 DAT). Rice (Oryza sativa) was harvested at 92 DAT.

We established triplicate plots $(10 \times 10 \text{ m})$ for five treatments and control in which 140 rice seedlings (Hesheng 10 cultivar) were transplanted to a depth of 5 cm with a spacing 141 of 14×28 cm using a rice transplanter. The soil of the fertilized plots received a dose 142 of 8 Mg ha⁻¹ with granules (2 mm in diameter) of the corresponding fertilizer type: steel 143 slag, rice biochar, shell slag, gypsum slag or a silicate and calcium fertilizer produced 144 from steel slag. The steel slag was collected from the Jinxing Iron & Steel Co., Ltd in 145 Fujian. The rice biochar was collected from the Qinfeng Straw Technology Co., Ltd in 146 Jiangsu Province. The gypsum slag was collected from building waste (from indoor-147 decoration of buildings). The silicate and calcium fertilizer was collected from the 148 Ruifeng Silicon Fertilizer Co., Ltd in Henan Province. The industrial and agricultural 149 wastes used in this study were rich in silicon, calcium and potassium, which are 150 151 essential nutrients for rice growth (Wang et al., 2015). The chemical composition of 152 these wastes is shown in Table S1.

All control and treatment plots received the same amount of water and fertilizer. 153 The field was plowed to a depth of 15 cm with a moldboard plow and was leveled two 154 days before rice transplantation immediately after plow. Mineral fertilizers were applied 155 in three times as complete (N-P₂O₅-K₂O at 16-16-16%; Keda Fertilizer Co., Ltd.) and 156 urea (46% N) fertilizers. The first application was one day before transplantation at 157 rates of 42 kg N ha⁻¹, 40 kg P₂O₅ ha⁻¹ and 40 kg K₂O ha⁻¹. The second application was 158 broadcasted during the tiller initiation stage (7 DAT) at rates of 35 kg N ha⁻¹, 20 kg 159 P_2O_5 ha⁻¹ and 20 kg K₂O ha⁻¹. The third application was broadcasted during the panicle 160 initiation stage (56 DAT) at rates of 18 kg N ha⁻¹, 10 kg P₂O₅ ha⁻¹ and 10 kg K₂O ha⁻¹. 161

162

163 Measurement of CO₂, CH₄ and N₂O emissions

164 Static closed chambers were used to measure CO_2 , CH_4 and N_2O emissions during 165 the study period. The chambers were made of PVC and consisted of two parts, an upper 166 transparent compartment (100 cm height, 30 cm width, 30 cm length) placed on a 167 permanently installed bottom collar (10 cm height, 30 cm width, 30 cm length). Each 168 chamber had two battery-operated fans to mix the air inside the chamber headspace, an 169 internal thermometer to monitor temperature changes during gas sampling and a gas-170 sampling port with a neoprene rubber septum at the top of the chamber for collecting gas samples from the headspace. We deployed three replicate chambers in each
treatment. A wooden boardwalk was built for accessing the plots to minimize
disturbance of the soil during gas sampling.

Gas flux was measured weekly in all chambers. Gas samples were collected from the chamber headspace using a 100-mL plastic syringe with a three-way stopcock. The syringe was used to collect gas samples from the chamber headspace 0, 15 and 30 min after chamber installation. The samples were immediately transferred to 100-mL airevacuated aluminum foil bags (Delin Gas Packaging Co., Ltd., Dalian, China) sealed with butyl rubber septa and transported immediately to the laboratory for the analysis of CO₂, CH₄ and N₂O.

CO₂, CH₄ and N₂O concentrations in the headspace air samples were determined 181 182 by gas chromatography using a stainless steel Porapak Q column (2 m length, 4 mm 183 OD, 80/100 mesh). CO₂ and CH₄ were analyzed in a Shimadzu GC-2010, whereas N₂O was evaluated with a Shimadzu GC-2014, Kyoto, Japan. A methane conversion furnace, 184 flame ionization detector (FID) and electron capture detector (ECD) were used for the 185 determination of the CO₂, CH₄ and N₂O concentrations, respectively. The operating 186 187 temperatures of the column, injector and detector for the determination of CO₂, CH₄ 188 and N₂O were adjusted to 45, 100 and 280 °C; to 70, 200 and 200 °C and to 70, 200, and 320 °C, respectively. Helium (99.999% purity) was used as a carrier gas (30 mL 189 190 min⁻¹), and a make-up gas (95% argon and 5% CH₄) was used for the ECD. The gas chromatograph was calibrated before and after each set of measurements using 503, 191 1030 and 2980 µL CO₂ L⁻¹ in He; 1.01, 7.99 and 50.5 µL CH₄ L⁻¹ in He and 0.2, 0.6 192 and 1.0 µL N₂O L⁻¹ in He (CRM/RM Information Center of China) as standards. CO₂, 193 194 CH₄ and N₂O fluxes were then calculated as the rate of change in the mass of CO₂, CH₄ 195 and N₂O per unit of surface area and per unit of time. Three different injections were used for each analysis. One sample was injected to the GC for each analysis. The 196 197 detection range of the instrument for CO₂ was 1 ppm, CH₄ was 0.1 ppm, N₂O was 0.05 ppm. We used linear calculation for CO₂, CH₄ and N₂O fluxes. 198

199

200 Global warming potential (GWP)

To estimate GWP, CO₂ is typically taken as the reference gas, and a change in the emission of CH₄ or N₂O is converted into "CO₂-equivalents". The GWP for CH₄ is 34 (based on a 100-year time horizon and a GWP for CO₂ of 1), and the GWP for N₂O is 208. The GWP of the combined emission of CH₄ and N₂O was calculated according to Ahmad *et al.* (2009): GWP = (cumulative CO₂ emission × 1 + cumulative CH₄ emission × 34 + cumulative N₂O emission × 298).

207

208 Measurement of soil properties

Three sample replicates of soil for each treatment and also for control were collected. After collecting and transporting them to the laboratory, the samples were stored at 4 °C until analyses. Soil temperature, pH, salinity, redox potential (Eh) and water content of the top 15 cm of soil were measured in triplicate *in situ* at each plot on each sampling time. Temperature, pH and Eh were measured with an Eh/pH/Temperature meter (IQ Scientific Instruments, Carlsbad, USA), salinity was

measured using a 2265FS EC meter (Spectrum Technologies Inc., Paxinos, USA) and 215 water content was measured using a TDR 300 meter (Spectrum Field Scout Inc., Aurora, 216 USA). We also collected soil samples from the 0-15 cm layer from each plot for the 217 determination of ferric, ferrous and total Fe contents. Total Fe content was determined 218 219 by digesting fresh soil samples with 1 M HCl. Ferrous ions were extracted using 1,10-220 phenanthroline and measured spectrometrically (Wang et al., 2015). Ferric concentration was calculated by subtracting the ferrous concentration from the total Fe 221 concentration. 222

223

224 Statistical analysis

Differences in soil properties and CO_2 , CH_4 and N_2O emissions among the fertilization treatments and controls were tested for statistical significance by repeatedmeasures analyses of variance (RM-ANOVAs). The relationships between mean GHG emissions and soil properties were determined by Pearson correlation analysis. These statistical analyses were performed using SPSS Statistics 18.0 (SPSS Inc., Chicago, USA).

We also performed multivariate statistical analyses using general discriminant 231 232 analysis (GDA) to determine the overall differences of soil salinity, pH, water content, redox potential (Eh) and temperature between fertilization treatments and sampling 233 234 dates. We also assessed the component of the variance due to the sampling time as an independent categorical variable. Discriminant analyses consist of a supervised 235 statistical algorithm that derives an optimal separation between groups established a 236 priori by maximizing between-group variance while minimizing within-group variance. 237 238 GDA is thus an appropriate tool for identifying the variables most responsible for the differences among groups while controlling the component of the variance due to other 239 categorical variables. The GDAs were performed using Statistica 8.0 (StatSoft, Inc., 240 241 Tulsa, USA). We used structural equation modelling (SEM) to identify the factors explaining the maximum variability of the CO₂, CH₄ and N₂O emissions and rice yield 242 throughout the study period as functions of the soil-amendment treatments to detect 243 total, direct and indirect effects of the amendment treatments on CO₂, CH₄ and N₂O 244 emissions and rice yield. SEMs allow the detection of indirect effects on the soil traits 245 (water content, temperature, salinity, pH, Eh, $[Fe^{2+}]$ and $[Fe^{3+}]$) due to the amendment 246 treatments that can be correlated with CO₂, CH₄ and N₂O emissions and rice yield. We 247 fit the models using the sem R package (Fox et al., 2013) and acquired the minimally 248 adequate model using the Akaike information criterion. Standard errors and 249 250 significance levels of the direct, indirect and total effects were calculated by 251 bootstrapping (1200 repetitions).

252

253 254

RESULTS

255 CO_2 , CH_4 and N_2O emissions from the paddy

Plots fertilized with steel slag, biochar, gypsum slag and the silicate and calcium fertilizer had significantly 20.2, 20.6, 22.2 and 21.4% lower mean CO₂ emissions than the control plots (P<0.05, Tables 1 and S2). Mean CO₂ emissions in shell slag plots did not differ significantly from those in the control plots (P>0.05). CO₂ emission varied significantly among treatments and sampling dates, and the steel slag and biochar treatments had significant interactions with time (P<0.01, Table S2). CO₂ flux generally remained low (<254 mg m⁻² h⁻¹) during the first 29 DAT but then increased to a seasonal peak (>1296 mg m⁻² h⁻¹) at 71 DAT (Figure 1A). The rice was nearly ripe by 71 DAT, with a corresponding decrease in CO₂ emissions until harvesting in July.

Steel slag, biochar, shell slag and gypsum slag fertilized plots had 53.8, 66.7, 62.7 265 and 81.5 % lower mean CH₄ emissions than those in the control plot (P<0.05, Table 266 S2). Mean CH₄ emissions in plots fertilized with the silicate and calcium fertilizer did 267 not differ significantly from those in the control plots (P>0.05). Maximum fluxes were 268 269 earlier in the control plots than in treatments (Figure 1B). The CH₄ flux peaked by 43 270 DAT in the plots amended with gypsum slag and the silicate and calcium fertilizer and peaked by 71 DAT in the steel slag, biochar and shell slag treatments. The paddy was 271 drained after the rice reached maturity, with CH₄ emissions decreasing until rice harvest 272 273 in July.

Plots with biochar had lower N₂O emissions (by 56.5%) in comparison with control 274 (P<0.05, Tables 1 and S2). Mean N₂O emission was higher in the control plots (-14.3 275 276 $\mu g m^{-2} h^{-1}$), and in shell slag and steel slag than in the gypsum slag (-144 $\mu g m^{-2} h^{-1}$) and silicate and calcium (-75.3 µg m⁻² h⁻¹) fertilizer treatments 57 DAT. Mean N₂O 277 emission was higher in the steel slag treatment (-68.9 μ g m⁻² h⁻¹) and control than in 278 biochar treatment 71 DAT (Figure 1C). Mean N₂O emission was lowest in the biochar 279 treatment (-97.3 μ g m⁻² h⁻¹) than in all other treatments and control 92 DAT (Figure 1C). 280 The negative values of N₂O emission were because our study site was strongly limited 281 by N, and in such conditions N₂O is reduced to NH₄⁺, thus, the soils acted as sink of 282 N₂O in all treatments. 283

284

The cumulative CO₂ and CH₄ emissions during the studied period were lower in 285 all treatments than in control plots (Figure 2A, B). The plots fertilized with biochar, 286 shell slag, gypsum slag and Si plus Ca fertilizer had also lower cumulative N₂O 287 emissions than control plots during the studied period (Figure 2C). The average rice 288 yield was higher in the plots fertilized with steel slag, biochar and shell slag compared 289 to the control treatment (Table 1). The GWP was higher for CO₂ than for CH₄ and N₂O 290 291 emissions, with a contribution >80%. The total GWPs for all emissions were 26.6, 29.8, 25.9, 34.2 and 26.7% lower in the steel slag, biochar, shell slag, gypsum slag and 292 293 silicate and calcium fertilizer treatments, respectively, compared to the control. 294 Compared to the control, the total GWPs per unit yield were lower in the steel slag, biochar, shell slag and silicate and calcium fertilizer treatments by 31.4, 39.25, 30.4 and 295 29.0%, respectively 296

297

298 Differences in soil properties among plots with different fertilization treatments

Soil pH, Eh, temperature, salinity, water content and ferrous, ferric and total Fe concentrations varied throughout the growing season (P<0.001; Figure 3, Table S3). Soil pH was higher in the plots with steel slag, biochar, shell slag and the silicate and 302 calcium fertilizer compared to the control treatment (P < 0.05). Soil Eh and total Fe concentration were higher in the plots with steel slag, biochar, gypsum slag and the 303 silicate and calcium fertilizer compared to the control (P < 0.05). Soil temperature was 304 higher in the plots with gypsum slag compared to the control (P < 0.05). Soil salinity 305 was higher in the plots with steel slag, shell slag, gypsum slag and the silicate and 306 calcium fertilizer compared to the control (P < 0.05). Soil water content was higher in 307 the plots with steel slag, biochar, gypsum slag and the silicate and calcium fertilizer 308 compared to the control (P < 0.05). Soil Fe²⁺ concentration was higher in the plots with 309 steel slag, biochar and the silicate and calcium fertilizer compared to the control 310 311 (P < 0.05). Soil Fe³⁺ concentration was higher in the plots with biochar, shell slag, gypsum slag and the silicate and calcium fertilizer compared to the control (P < 0.05). 312

313

314 Relationships between CO₂, CH₄ and N₂O emissions and soil properties

Seasonal CO₂ emission was positively correlated with soil temperature in all plots 315 (R = 0.81-0.88, P < 0.01, Table S4); positively correlated with soil Eh in the biochar, 316 317 shell slag, gypsum slag and the silicate and calcium fertilizer treatments (R = 0.29-0.40, P < 0.05); positively correlated with soil water content in the control and the steel slag, 318 biochar, gypsum slag and silicate and calcium fertilizer treatments (R = 0.28-0.46, 319 P < 0.05); positively correlated with soil Fe²⁺ concentration only in the control plot (R =320 0.35, P<0.05) and negatively correlated with soil pH in the control and the biochar, 321 shell slag, gypsum slag and silicate and calcium fertilizer treatments (R = -0.28 to -0.63, 322 323 *P*<0.05).

Seasonal CH₄ emission was positively correlated with soil salinity (R = 0.27-0.65, *P*<0.05, Table S4) and water content in all plots (R = 0.28-0.67, *P*<0.01), positively correlated with soil Fe²⁺ concentration in the shell slag, gypsum slag and silicate and calcium fertilizer treatments (R = 0.26-0.44, *P*<0.05) and positively correlated with soil Fe³⁺ and total Fe concentration in the silicate and calcium fertilizer treatment (R = 0.50and 0.44, *P*<0.05).

Seasonal N₂O emission was positively correlated with soil salinity in the biochar treatment (R = 0.46, P < 0.05, Table S4), positively correlated with soil Fe³⁺ and total Fe concentration in the steel slag treatment (R = 0.30 and 0.27, P < 0.05) and negatively correlated with soil water content and Fe²⁺, Fe³⁺ and total Fe concentrations in the silicate and calcium fertilizer treatment (R = -0.32 to -0.42, P < 0.05).

335

336 Discriminant General Analyses (DGA)

The DGA conducted with soil pH, Eh, temperature, salinity, water content and Fe²⁺ 337 and Fe³⁺ concentrations and the CO₂, CH₄ and N₂O emissions as independent 338 continuous variables, sampling time as the categorical independent variable and plots 339 receiving the fertilization treatments as the categorical dependent variable indicated 340 statistical differences among all treatments except between the biochar and the steel 341 slag and shell slag treatments (Table S5, Figure 4). Soil pH, Eh, salinity, water content 342 and Fe²⁺ and Fe³⁺ concentrations and the CO₂, CH₄ and N₂O emissions contributed 343 significantly to these separations in this GDA model (Table S6). 344

345

346 SEM analyses

The SEM analyses identified some of the soil variables underlying the relationships 347 between the fertilization treatments and CO₂, CH₄ and N₂O emissions. The negative 348 relationship between steel slag fertilization and CO₂ emission was due to direct negative 349 effect plus and indirect positive relationships with soil Fe^{2+} concentration that in turn 350 was negatively associated with CO₂ emission (Figure S3A, S4A). The negative direct 351 352 relationship of steel slag fertilization with CH₄ emission was partially counteracted by a positive relationship of the steel slag fertilization with soil salinity, which thereafter 353 was positively associated with CH₄ emission (Figure S3B,S4B). Biochar fertilization 354 had negative relationships with CO₂, CH₄ and N₂O emissions. These negative 355 relationships in the case of CH₄ and N₂O emissions were slightly counteracted by an 356 indirect positive effect through the positive relationship of biochar fertilization with soil 357 358 salinity (Figure S5A-C,S6A-C). Biochar fertilization had a strong positive relationship with rice yield that was slightly counteracted by the negative relationship of biochar 359 fertilization with CH₄ emission (Figure S5D,S6D). 360

As with biochar fertilization, shell slag fertilization was negatively correlated with 361 CH₄ emission, but this direct negative relationship was counteracted by an indirect 362 positive effect of shell slag fertilization with soil salinity (Figure S7,S8), finally 363 resulting in absence of any global total effect. The gypsum slag and silicate and calcium 364 fertilizer treatments also had negative direct relationships with CO₂ and CH₄ emissions. 365 These negative direct relationships were partially but significantly counteracted by an 366 indirect positive effect of the gypsum slag and silicate and calcium fertilizer treatments 367 on soil water content (Figures S9-S12). 368

DISCUSSION

372 Effects of treatments on CO₂ emissions

369 370

371

CO₂ emission varied seasonally (Figure 1A), changing with rice growth and 373 temperature (Figure 3). Temperature controls CO₂ production and emission (Asensio 374 et al., 2012) by not only increasing soil microbial activity, but also by altering plant 375 respiration (Slot et al., 2013). In our study, the steel slag, biochar, gypsum slag and 376 silicate and calcium fertilizer treatments significantly decreased CO₂ emissions 377 (Figure 2A). These fertilizers are all alkaline and then increase soil pH, facilitating 378 the absorption of CO₂ by water through the carbonate-bicarbonate buffer system 379 (Revell et al., 2012). The steel slag, gypsum slag and silicate and calcium fertilizer are 380 also rich in Ca^{2+} , which can combine with CO_2 to form $CaCO_3$. Such product is 381 deposited in the soil and decreases CO₂ emission (Phillips et al., 2013). 382

Soil Fe³⁺ concentration also increased in the steel slag and silicate and calcium fertilizer treatments (Figure 3G and 3H), thereby enhancing the formation of iron plaque on the rice roots and thus limiting the transport of nutrients, water and soil dissolved organic carbon (DOC) to rice roots (Huang *et al.*, 2012). Iron plaques decrease root ventilation, so less CO₂ is transported through the internal system of interconnected gas lacunae of the plants. Moreover, when soil Fe³⁺ concentration increases, the rate of Fe³⁺ reduction also increases. Then, reduced Fe²⁺ accumulates in the soil (Wang *et al.*, 2015) and inhibits microbial activity, lowering CO_2 emissions (Huang *et al.*, 2009). The steel slag treatment accordingly had an indirect effect on CO₂ emissions by increasing soil Fe²⁺ concentrations.

The gypsum slag fertilization treatment increased soil SO_4^{2-} (Chen *et al.*, 2013) 393 thereby increasing the rate of SO_4^{2-} reduction and its accumulation in the soil. Higher 394 395 sulfide concentrations in soil can inhibit microbial activity and subsequently decrease CO₂ emissions (Chen et al., 2013). The gypsum slag and silicate and calcium 396 fertilizer treatments decreased CO₂ emissions, an effect also associated with 397 increases in soil water content. Linn and Doran (1984) reported that soil water 398 contents >60% decreased aerobic microbial activity and increased anaerobic processes, 399 which decreased CO₂ production and emission. In our study, the average water content 400 401 in the control, gypsum slag and silicate and calcium fertilizer treatments were all >60% 402 during the growing season: 62% in the control plots and 80% and 69% in the gypsum slag and silicate and calcium fertilizer treatments, respectively (Figure 3E and 3F). 403 Biochar fertilization also reduced CO₂ emission, which is in accordance with 404 previous research (Revell et al., 2012). Biochar is highly stable, has a high capacity 405 406 to absorb atmospheric CO₂ and can remain in the soil for long periods (Zhang *et al.*, 2010: Revell et al., 2012). 407

The GDA (Figure 4) and SEM (Figures S3-S12) analyses indicated that all 408 409 fertilization treatments had some positive effects on CO2 and CH4 emissions by increasing soil salinity and water content. However, these indirect positive effects, 410 although significant, were not large enough to prevent the total negative relationships 411 with the CO₂ and CH₄ emissions (Figures S3-S12). Biochar amendment also increased 412 413 the soil C:N ratio. Higher C:N ratios are associated with limited N availability, which 414 impedes mineralization and stabilizes microbial biomass carbon (Revell et al., 2012), thereby lowering CO₂ emissions (Chen et al., 2013). In fact, decreases in the release 415 416 of N and P from litter have been associated with sudden decreases in CO₂ emissions (Asensio et al., 2012). 417

418

419 Effects of treatments on CH₄ emissions

420 CH₄ emission varied seasonally (Figure 1B), with emissions of CH₄ being low 421 soon after rice transplantation when the soil was not strictly anaerobic. CH₄ 422 emissions were also lower during the final ripening and drainage periods. These 423 results agreed with those by Minamikawa *et al.* (2014), in which a lowering of the water 424 table decreased the abundance of the methanogenic archaeal population and hence CH₄ 425 production and increased the abundance of methanotrophs and thus CH₄ oxidation.

Both Fe^{3+} and SO_4^{2-} are alternative electron acceptors that will use C substrates before methanogens (Jiang *et al.*, 2013) thus decreasing the amount of CH₄ production (Ali *et al.*, 2008), which compete with methanogens for C substrates (Jiang *et al.*, 2013). The steel and gypsum slag treatments increased Eh, which is also consistent with the decrease in CH₄ emissions. Recent studies have found that the presence of ferric iron and sulfate can support the oxidation of CH₄ under anaerobic conditions (Wang *et al.*, 2015). Fertilization with steel and gypsum slags would thus decrease the release of CH₄ to the atmosphere as a result of a decrease in CH_4 production, an increase in CH_4 oxidation, or both (Wang *et al.*, 2015).

Biochar can also reduce CH₄ emissions (Figure 2B), as previously reported (Zhang 435 et al., 2010; Revell et al., 2012). Biochar amendment increases soil ventilation (Revell 436 437 et al., 2012), which increases methane oxidation and thus decreases methane production. 438 Biochar fertilization also decreases and stabilizes the microbial biomass carbon, which may also account for decreases in CH₄ emission (Revell et al., 2012). Furthermore, 439 biochar is very stable, highly porous and can absorb CH₄ (Zhang et al., 2010; Revell 440 et al., 2012) and increase the oxidation of CH_4 (Revell et al., 2012). As consequence, 441 the soil fertilized with biochar in our study released low amounts of CH₄. The shell slag 442 also decreased CH₄ emission but increased soil salinity due to its marine origin. 443

444

445 *Effects of fertilization treatments on N₂O emissions*

 N_2O emission had no obvious patterns of seasonal variation. N_2O emission was low throughout the growing season. The paddies in our study region are strongly N limited (Wang *et al.*, 2015), so together with the low levels of soil O_2 , most of the N_2O produced is likely reduced to N_2 , which would lead to the apparently very low emissions or even a net uptake of N_2O (Zhang *et al.*, 2010).

Biochar significantly decreased N₂O emission, as previously reported (Cayuela et 451 452 al., 2010). Biochar is rich in alkaline material, so it can increase soil pH, stimulate N₂O reductase activity and thereby induce N₂O reduction to N₂ (Cayuela et al., 2010). The 453 porous structure of biochar can also absorb NH4⁺-N and NO3⁻-N from soil solution, 454 thereby inhibiting nitrification and denitrification and thus decreasing N₂O emission 455 456 (Cayuela et al., 2010). Biochar may also improve soil aeration and impede the function and diversity of denitrifying bacteria, thereby decreasing N₂O emission (Zhang et al., 457 2010). 458

459 Steel slag, shell slag, gypsum slag and the silicate and calcium fertilizer also decreased N₂O emissions. Our experiment, however, was conducted within a single 460 growing season, and the variation in N₂O emission within a treatment group was quite 461 large, so identifying a discernible effect of the different fertilization treatments on mean 462 N₂O emissions was difficult. The lack of significant decreases in N₂O emission by an 463 amendment material likely has several causes. Steel slag and the silicate and calcium 464 fertilizer are rich in Fe^{3+} , which would increase the soil Fe^{3+} concentration. Huang *et* 465 al. (2009) suggested that soil Fe^{3+} concentration was one of the most sensitive factors 466 regulating N_2O emissions from paddies. Fe³⁺ concentrations and N_2O emissions, 467 however, were not correlated in our study. A previous study reported both positive and 468 negative correlations between Fe³⁺ concentrations and N₂O production, which were due 469 to different soil conditions and hence the presence of various forms of Fe³⁺ (active, Fe³⁺ 470 and complex ferric oxide, Fe₂O₃) (Huang et al., 2009). 471

The absence of a consistent effect of the steel slag and silicate and calcium fertilizer on N₂O flux from the paddy could be attributed an inhibition of the enzymatic reduction of N₂O by higher levels of Fe³⁺ increasing N₂O release or an atmospheric inhibition of the enzymatic reduction of N₂O in soils (Huang *et al.*, 2009), an increase in the production of hydroxylamine by the biological oxidation of ammonia favored by higher Fe^{3+} concentrations and the further reaction of hydroxylamine with Fe^{3+} to generate N₂O (Noubactep, 2011). The increase in Fe^{2+} concentrations by direct release from fertilizers or by microbial reduction (Ali *et al.*, 2008) can further promote the reduction of nitrites to N₂O (Hansen *et al.*, 1994).

Gypsum slag is rich in SO_4^{2-} , which has the same function as Fe^{3+} in N cycling. 481 The gypsum slag decreased N₂O emission during the period of continuous flooding and 482 slightly increased N₂O emission in the drained paddy field. These results are consistent 483 with the expected competition between SO_4^{2-} as NO_3^{-} as electron acceptor in 484 denitrification process under the anaerobic conditions of a flooded paddy (Yavitt et al., 485 1987). Thus, the relationships of the gypsum slag with N_2O emissions changed 486 487 depending on the period: during the flooded (decrease) and drained (increase) as a 488 consequence the gypsum slag did not significantly decrease overall N₂O emissions throughout the entire growing season. 489

490

491 Best management practices to reduce GWP

Our results suggested that the application of steel slag, biochar, shell slag and a 492 silicate and calcium fertilizers all effectively reduced the adverse impacts of rice 493 494 agriculture on climate change, with lower total GWPs per unit yield compared to the 495 control treatment. The alkalinity of the steel slag, biochar, shell slag and the silicate and calcium fertilizer also improved the soil quality in this rice-producing area impacted by 496 acid deposition. The rice biochar was rich in N in our study, thereby after rice biochar 497 amendment, the plots had higher soil N-concentration than the control plots (Wang et 498 499 al. unpublished data, Wang et al., 2016), which may have ultimately lead to higher grain yield from the treatment. Moreover, such as observed in previous studies, the 500 application to soil of all the studied wastes have proved to increase soil N, P and S 501 availability in pore-water and also to prevent the losses of these elements by leaching 502 (Wang et al. 2016) with the consequent improving in soil fertility. 503

This study was based only on the results in a very important but short time-period. 504 More studies are thus warranted to assure the suitability of the effects of the application 505 of industrial and agricultural wastes tin other crop periods such ad late rice crop. 506 Moreover, some of these wastes can introduce pollutants (such as heavier metal) to 507 environment, and this should be also assessed. However, some of our previous studies 508 showed that steel slag application to rice crops in equivalents doses to those of this 509 study did not significantly impact on the heavy metals concentrations in soil and in rice 510 511 yields (Wang et al., 2015b). A continuous application of wastes in the paddy field, could 512 drive to decrease soil bulk density and consequently rise soil pore diameter, which will increase the loss of water and nutrients and thus be detrimental to rice growth (Zhao, 513 2012). However, the 8 Mg ha⁻¹ waste amendment had increased the water content and 514 porewater nutrient concentrations (Wang et al., 2016). (Wang et al., 2016). 515

The fertilizer materials chosen for this study were in abundant supply for application to rice paddies. They also have a low cost and recycle wastes. In a sustainable agriculture, steel slag, biochar, shell slag and silicate and calcium fertilizers 519 can all increase C sequestration by paddy soils, improve soil fertility, increase rice 520 yields and mitigate GHG emissions. Our results thus provide strong evidence for 521 several benefits from the application of these industrial and agricultural wastes in 522 rice fields.

523

532

533 534

524 Acknowledgments. The authors would like to thank Hongchang Ren, Xuming Wang and Qinyang Ji for their assistance with field sampling. Funding was provided by the 525 National Science Foundation of China (41571287, 31000209), Natural Science 526 Foundation Key Programs of Fujian Province (2014R1034-3, 2014Y0054 and 527 2014J01119), the Program for Innovative Research Team at Fujian Normal University 528 (IRTL1205), the European Research Council Synergy grant ERC-SyG-2013-610028 529 IMBALANCE-P, the Spanish Government grant CGL2013-48074-P and the Catalan 530 531 Government grant SGR 2014-274.

REFERENCES

- Ahmad, S., Li, C., Dai, G., Zhan, M., Wang, J., Pan, S. and Cao, C. (2009).
 Greenhouse gas emission from direct seeding paddy field under different rice
 tillage systems in central China. *Soil & Tillage Research* 106: 54–61.
- Ali, M.A., Oh, J.H. and Kim, P.J. (2008). Evaluation of silicate iron slag amendment
 on reducing methane emission from flood water rice farming. *Agriculture Ecosystems & Environment* 128: 21–26.
- Asensio, D., Yuste, J.C., Mattana, S., Ribas, A., Llusià, J. and Peñuelas, J. (2012). Litter
 VOCs induce changes in soil microbial biomass C and N and largely increase soil
 CO₂ efflux. *Plant and Soil* 360: 163–174.
- Cayuela, M.L., Oenema, O., Kuikman, P.J., Bakker, P.R. and Van Groenigen, J.W.
 (2010). Bioenergy by-products as soil amendments? Implications for carbon
 sequestration and greenhouse gas emissions. *Global Change Biology: Bioenergy*2: 201–213.
- Chen, B.Y., Liu, S.Q., Huang, J.Y., Shiau, T.J. and Wang, Y.M. (2013). Reduction of
 carbon dioxide emission by using microbial fuel cells during wastewater
 treatment. *Aerosol and Air Quality Research* 13: 266–274.
- FAO [Food and Agricultural Organization of the United Nations]. 2009 OECD-FAO
 Agricultural Outlook 2011–2030.
- 553 Fox, J., Nie, Z. and Byrnes, J. (2013). sem: Structural Equation Models.
- Feng, Y.Z., Xu, Y.P., Yu, Y.C., Xie, Z.B. and Lin, X.G. (2012). Mechanisms of biochar
 decreasing methane emission from Chinese paddy soils. *Soil Biology and Biochemistry* 46: 80–88.
- Hansen, H.C.B., Borggaard, O.K. and Sørensen, J. (1994). Evaluation of the free energy
 of formation of Fe (II)-Fe (III) hydroxide-sulphate (green rust) and its reduction
 of nitrite. *Geochimica et Cosmochimica Acta* 58: 2599–2608.
- Huang, B., Yu, K. and Gambrell, R.P. (2009). Effects of ferric iron reduction and
 regeneration on nitrous oxide and methane emissions in a rice soil. *Chemosphere*74: 481–486.

- Huang, Y., Chen, Z. and Liu, W. (2012). Influence of iron plaque and cultivars on
 antimony uptake by and translocation in rice (*Oryza sativa L.*) seedlings exposed
 to Sb (III) or Sb (V). *Plant and Soil* 352: 41–49.
- Hütsch, B.W. (2001). Methane oxidation in non-flooded soils as affected by crop
 production. *European Journal of Agronomy* 14: 237–260.
- Jiang, G., Sharma, K.R. and Yuan, Z. (2013). Effects of nitrate dosing on methanogenic
 activity in a sulfide-producing sewer biofilm reactor. *Water Research* 47: 1783–
 1792.
- 571 Linn, D.M. and Doran, J.W. (1984). Effect of water-filled pore space on carbon
 572 dioxide and nitrous oxide production in tilled and nontilled soils. *Soil Science*573 *Society of America Journal* 48: 1267–1272.
- Minamikawa, K., Fumoto, T., Itoh, M., Hayano, M., Sudo, S. and Yagi, K. (2014).
 Potential of prolonged midseason drainage for reducing methane emission from
 rice paddies in Japan: a long-term simulation using the DNDC-Rice model. *Biology and Fertility of Soils* 50: 879–889.
- Noubactep, C. (2011). On the mechanism of microbe inactivation by metallic iron.
 Journal of Hazardous Materials 198: 383–386.
- Pernes-Debuyser, A. and Tessier, D. (2004). Soil physical properties affected by
 long-term fertilization. *European Journal of Soil Science* 55: 505–512.
- Phillips, A.J., Lauchnor, E., Eldring, J., Esposito, R., Mitchell, A.C., Gerlach, R.,
 Cunningham, A.B. and Spangler, L.H. (2013). Potential CO₂ leakage reduction
 through biofilm-induced calcium carbonate precipitation. *Environmental Science*& *Technology* 47: 142–149.
- Revell, K.T., Maguire, R.O. and Agblevor, F.A. (2012). Influence of poultry litter
 biochar on soil properties and plant growth. *Soil Science* 177: 402–408.
- Slot, M., Wright, S.J. and Kitajima, K. (2013). Foliar respiration and its temperature
 sensitivity in trees and lianas: in situ measurements in the upper canopy of a
 tropical forest. *Tree Physiology* 33: 505–515.
- Wang, W., Sardans, J., Lai, D.Y.F., Wang, C., Zeng, C., Tong, C., Liang, Y. and
 Peñuelas, J. (2015a). Effects of steel slag application on greenhouse gas emissions
 and crop yield over multiple growing seasons in a subtropical paddy field in China. *Field Crops Research* 171: 146–156.
- Wang, W.Q., Sardans, J., Zeng, C.S., Tong, C., Peñuelas, J. (2015b) Steel slag reduces
 methane and nitrous oxide emission and increases rice production in a paddy field
 area of southeast China Field Crop Research. 117: 146-156.
- 598
- Wang, W., Zeng, C., Sardans, J., Wang, C., Zeng, D., Peñuelas, J. (2016). Amendment
 with industrial and agricultural wastes reduces surface-water nutrient loss and
 storage of dissolved greenhouse gases in a subtropical paddy field. *Agriculture, Ecosystems and Environment* 231: 296-303.
- Wassmann, R. and Aulakh, M.S. (2000). The role of rice plants in regulating
 mechanisms of methane emissions. *Biology and Fertility of Soils* 31: 20–29.
- Yavitt, J.B., Lang, G.E. and Wieder, R.K. (1987). Control of carbon mineralization to
 CH₄ and CO₂ in anaerobic, *Sphagnum* derived peat from Big Run Bog, West

- 607 Virginia. *Biogeochemistry* 4: 141–157.
- 608 Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J. and Crowley, D.
- 609 (2010). Effect of biochar amendment on yield and methane and nitrous oxide
- emissions from a rice paddy from Tai Lake plain, China. *Agriculture, Ecosystems & Environment* 139: 469–475.

Tables

	Rice yield	GW	P (kg CO ₂ -eq ha	1)	GWP	GWP
Treatment	(Mg ha ⁻¹)	CO ₂	CH ₄	N ₂ O	$(\text{kg CO}_2\text{-eq ha}^{-1})$	(kg CO ₂ -eq Mg ⁻¹ yield)
Control	8.06±0.26c	23569±423a	5385±1099a	165±15a	29119±546a	3613±176a
Steel slag	8.63±0.19b	18819±437b	2490±759bc	71.7±68.6ab	21381±473b	2477±104b
Biochar	9.31±0.57a	18726±1182b	1794±558d	-87.1±90.3b	20433±1132b	2195±693b
Shell slag	8.58±0.24b	19590±2719ab	2007±155bcd	-11.2±68.5b	21586±2482b	2516±694b
Gypsum slag	6.55±0.43d	18335±993b	995±323e	-162±212b	19168±965b	2926±633ab
Silicate and calcium fertilizer	8.32±0.31bc	18515±1784b	2956±298b	-109±144b	21358±1588b	2567±592b

Table 1. Effect of the different fertilization treatments on the global warming potential (GWP)

Different letters within a column indicate significant differences between the treatments and control plots (P < 0.05) obtained by Bonferroni's post hoc test.

- 1 Figure legends
- 2

Figure 1. CO_2 (A), CH_4 (B) and N_2O (C) emissions in control and treatment plots during the studied period. Error bars indicate one standard error of the mean of triplicate measurements. Different letters indicate significant differences (*P*<0.05) between fertilization treatments.

7

Figure 2. Cumulative emissions of CO_2 (A), CH_4 (B), N_2O (C) cumulative emissions among control and treatment plots during the studied period. Error bars indicate one standard error of the mean of triplicate measurements. Different letters indicate significant differences (*P*<0.05) between fertilization treatments.

12

Figure 3. Soil pH (A), Eh (B), temperature (C), salinity (D), water content (E), Fe^{2+} concentration (F), Fe^{3+} concentration (G) and total Fe concentration (H) in the control and treatment plots. Error bars indicate one standard error of the mean of triplicate measurements. Different letters indicate significant differences (*P*<0.05) between fertilization treatments.

18

Figure 4. Standardized canonical discriminant function coefficients for the root representing the gas emissions and soil variables as independent continuous variables, the days of sampling as a categorical independent variable and different grouping dependent factors corresponding to the fertilization treatments. Bars indicate the confidence intervals (95%) of the scores of each grouping factor along Root 1 and Root 2.

- 25
- 26
- 27

28

29

30

31

32

- 34
- 35 36
- 37
- 38

Supplementary Information

Table S1.	Characteristics of different waste amendments in this study	. Between	brackets there	are the number	er of kg ha ⁻¹ o	of each element	that represents 8
Mg ha ⁻¹ o	f the corresponding fertilization treatments.						

Treatments	Physical property					Che	emical prop	erties				
		Fe ₂ O ₃	Fe	SO ₃	S	SiO ₂	C	Ν	Р	K	Mg	Ca
		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Steel slag	Granular form	4.8	-	-	-	40.7	0.7	0.01	0.01	0.5	0.36	24.9
	(2 mm)						(56)	(0.8)	(0.8)	(40)	(29)	(1992)
Biochar	Granular form	-	0.2	-	0.6	-	56.6	1.4	1.0	1.8	1.0	0.5
	(2 mm)						(4528)	(112)	(80)	(144)	(80)	(40)
Shells slag	Granular form	0.3	-	0.2	-	2.7	12.3	0.3	0.04	0.1	0.1	37.7
	(2 mm)						(984)	(24)	(3.2)	(8)	(8)	(3016)
Gypsum slag	Granular form	0.4	-	54.4	-	0.7	0.7	0.01	0.01	0.1	0.3	30.6
	(2 mm)						(56)	(0.8)	(0.8)	(8)	(24)	(2448)
Silicate and calcium slag	Granular form	6.2	-	1.3	-	27.7	0.7	0.01	0.04	2.2	2.6	25.4
	(2 mm)						56()	(0.8)	(3.2)	(176)	(208)	(2032)

1 2 Table S2. Summary of the RM-ANOVAs for the greenhouse-gas emissions for the various

amendments.

	df	MS	F	Р
CO ₂				
Steel slag	1, 4	971987.40	60.94	0.001
Time	13, 52	3888621.81	70.40	< 0.001
Steel × Time	13, 52	116676.42	2.11	0.029
Biochar	1,4	1010144.70	14.87	0.018
Time	13, 52	4257786.91	66.84	< 0.001
Biochar × Time	13, 52	191762.68	3.01	0.002
Shell slag	1,4	681857.98	2.09	0.222
Time	13, 52	4018988.61	58.89	< 0.001
Shell slag × Time	13, 52	182597.32	2.68	0.006
Gypsum slag	1, 4	1483139.92	31.37	0.005
Time	13, 52	4045259.60	115.47	< 0.001
Gypsum slag × Time	13, 52	57447.00	1.64	0.104
Silicate and calcium fertilizer	1, 4	1100188.81	7.62	0.049
Time	13, 52	4341463.96	109.38	< 0.001
Silicate and calcium fertilizer × Time	13, 52	63784.18	1.61	0.113
CH ₄				
Steel slag	1,4	412.28	8.35	0.046
Time	13, 52	81.64	9.57	< 0.001
Steel × Time	13, 52	31.72	3.72	< 0.001
Biochar	1,4	480.55	8.49	0.043
Time	13, 52	60.32	6.35	< 0.001
Biochar × Time	13, 52	48.70	5.13	< 0.001
Shell slag	1, 4	425.31	9.28	0.038
Time	13, 52	63.21	8.65	< 0.001
Shell slag × Time	13, 52	48.03	6.57	< 0.001
Gypsum slag	1, 4	718.25	14.70	0.019
Time	13, 52	60.75	8.74	< 0.001
Gypsum slag × Time	13, 52	39.73	5.71	< 0.001

Silicate and calcium fertilizer	1, 4	220.70	4.57	0.099
Time	13, 52	91.98	11.64	< 0.001
Silicate and calcium fertilizer × Time	13, 52	33.43	4.23	<0.001
N ₂ O				
Steel slag	1, 4	4189.01	1.75	0.256
Time	13, 52	3700.64	1.33	0.225
Steel × Time	13, 52	1752.89	0.63	0.816
Biochar	1,4	30732.38	7.61	0.049
Time	13, 52	7576.81	2.47	0.011
Biochar × Time	13, 52	3142.42	1.02	0.444
Shell slag	1, 4	15000.62	6.27	0.066
Time	13, 52	974.07	1.20	0.305
Shell slag × Time	13, 52	864.42	1.07	0.408
Gypsum slag	1, 4	51808.84	2.35	0.200
Time	13, 52	5964.84	1.08	0.393
Gypsum slag × Time	13, 52	2278.31	0.41	0.958
Silicate and calcium fertilizer	1, 4	36332.03	3.57	0.132
Time	13, 52	2259.63	0.92	0.541
Silicate and calcium fertilizer × Time	13, 52	2223.64	0.90	0.555

- - -

	df	MS	F	Р
рН				
Steel slag	1,4	1.26	31.86	0.005
Time	13, 52	5.65	221.41	< 0.001
Steel × Time	13, 52	0.33	12.74	< 0.001
Biochar	1, 4	1.38	41.19	0.003
Time	13, 52	6.08	645.02	< 0.001
Biochar × Time	13, 52	0.16	17.38	< 0.001
Shell slag	1,4	1.12	28.26	0.006
Time	13, 52	6.21	669.21	< 0.001
Shell slag × Time	13, 52	0.14	15.08	< 0.001
Gypsum slag	1,4	0.16	3.78	0.124
Time	13, 52	5.77	194.91	< 0.001
Gypsum slag × Time	13, 52	0.10	3.36	0.001
Silicate and calcium fertilizer	1, 4	11.46	213.84	< 0.001
Time	13, 52	5.80	269.79	< 0.001
Silicate and calcium fertilizer × Time	13, 52	1.24	57.55	< 0.001
Eh				
Steel slag	1,4	2003.44	95.74	0.001
Time	13, 52	9145.69	89.72	< 0.001
Steel × Time	13, 52	475.57	4.67	< 0.001
Biochar	1, 4	3784.17	261.73	< 0.001
Time	13, 52	8332.97	148.62	< 0.001
Biochar × Time	13, 52	606.72	10.82	< 0.001
Shell slag	1, 4	3971.69	292.15	< 0.001
Time	13, 52	8856.19	157.64	< 0.001
Shell slag × Time	13, 52	639.82	11.39	< 0.001
Gypsum slag	1,4	5982.61	22.97	0.009
Time	13, 52	9472.70	40.39	< 0.001
Gypsum slag × Time	13, 52	1663.69	7.09	< 0.001

14 Table S3. Summary of the RM-ANOVAs for the soil properties for the various amendments.

Silicate and calcium fertilizer	1, 4	3140.30	46.36	0.002
Time	13, 52	6395.00	74.14	< 0.001
Silicate and calcium fertilizer × Time	13, 52	3093.60	35.87	< 0.001
Temperature				
Steel slag	1,4	0.03	1.15	0.344
Time	13, 52	61.60	3872.83	< 0.001
Steel × Time	13, 52	0.01	0.57	0.869
Biochar	1,4	0.09	5.30	0.083
Time	13, 52	62.78	3615.67	< 0.001
Biochar × Time	13, 52	0.02	1.34	0.219
Shell slag	1,4	0.06	2.47	0.191
Time	13, 52	62.72	1860.06	< 0.001
Shell slag × Time	13, 52	0.07	2.09	0.031
Gypsum slag	1,4	0.86	32.40	0.005
Time	13, 52	64.15	2253.27	< 0.001
Gypsum slag × Time	13, 52	0.17	5.98	< 0.001
Silicate and calcium fertilizer	1,4	0.53	4.04	0.115
Time	13, 52	62.06	2486.82	< 0.001
Silicate and calcium fertilizer × Time	13, 52	0.17	6.93	< 0.001
Salinity				
Steel slag	1,4	0.43	14.21	0.020
Time	13, 52	0.20	35.64	< 0.001
Steel × Time	13, 52	0.01	1.10	0.377
Biochar	1,4	0.25	2.99	0.159
Time	13, 52	0.18	13.08	< 0.001
Biochar × Time	13, 52	0.01	0.75	0.705
Shell slag	1,4	0.33	13.96	0.020
Time	13, 52	0.20	8.72	< 0.001
Shell slag × Time	13, 52	0.02	0.80	0.662
Gypsum slag	1,4	2.42	68.20	0.001

Time	13, 52	0.26	16.59	< 0.001
Gypsum slag × Time	13, 52	0.04	2.59	0.008
Silicate and calcium fertilizer	1, 4	1.24	76.53	0.001
Time	13, 52	0.29	38.69	< 0.001
Silicate and calcium fertilizer × Time	13, 52	0.03	3.55	0.001
Water content				
Steel slag	1,4	444.36	23.63	0.008
Time	13, 52	649.64	194.83	< 0.001
Steel × Time	13, 52	15.67	4.70	< 0.001
Biochar	1,4	127.65	12.32	0.025
Time	13, 52	526.48	108.79	< 0.001
Biochar × Time	13, 52	9.35	1.93	0.048
Shell slag	1,4	57.75	4.88	0.092
Time	13, 52	636.61	89.86	< 0.001
Shell slag × Time	13, 52	13.35	1.88	0.054
Gypsum slag	1,4	7495.74	561.03	< 0.001
Time	13, 52	708.13	131.41	< 0.001
Gypsum slag × Time	13, 52	13.72	2.55	0.009
Silicate and calcium fertilizer	1,4	1087.20	84.55	0.001
Time	13, 52	753.49	132.26	< 0.001
Silicate and calcium fertilizer × Time	13, 52	46.70	8.20	<0.001
Fe ²⁺ concentration				
Steel slag	1,4	5.95	124.59	< 0.001
Time	13, 52	6.32	30.68	< 0.001
Steel × Time	13, 52	0.53	2.56	0.008
Biochar	1,4	4.03	17.71	0.014
Time	13, 52	5.09	20.85	< 0.001
Biochar × Time	13, 52	0.25	1.04	0.433
Shell slag	1,4	0.22	0.33	0.598
Time	13, 52	4.09	11.32	< 0.001

Shell slag × Time	13, 52	0.79	2.18	0.024
Gypsum slag	1,4	< 0.001	0.01	0.934
Time	13, 52	5.20	29.03	< 0.001
Gypsum slag × Time	13, 52	0.41	2.28	0.018
Silicate and calcium fertilizer	1, 4	4.23	112.25	< 0.001
Time	13, 52	4.74	24.79	< 0.001
Silicate and calcium fertilizer × Time	13, 52	0.74	3.89	< 0.001
Fe ³⁺ concentration				
Steel slag	1,4	2.36	1.11	0.352
Time	13, 52	22.12	24.77	< 0.001
Steel × Time	13, 52	1.08	1.21	0.297
Biochar	1,4	46.95	48.63	0.002
Time	13, 52	31.70	19.71	< 0.001
Biochar × Time	13, 52	2.19	1.36	0.211
Shell slag	1,4	64.06	9.63	0.036
Time	13, 52	22.63	8.61	< 0.001
Shell slag × Time	13, 52	4.45	1.69	0.091
Gypsum slag	1,4	15.13	47.39	0.002
Time	13, 52	21.32	39.06	< 0.001
Gypsum slag × Time	13, 52	1.54	2.82	0.004
Silicate and calcium fertilizer	1,4	23.11	31.57	0.005
Time	13, 52	20.93	26.48	< 0.001
Silicate and calcium fertilizer × Time	13, 52	1.28	1.62	0.111
Total Fe concentration				
Steel slag	1,4	15.79	6.84	0.059
Time	13, 52	46.32	37.43	< 0.001
Steel × Time	13, 52	1.86	1.51	0.147
Biochar	1,4	78.49	89.19	0.001
Time	13, 52	56.65	26.09	< 0.001
Biochar × Time	13, 52	3.40	1.57	0.126

Shell slag	1,4	71.80	6.49	0.063
Time	13, 52	43.83	11.11	< 0.001
Shell slag × Time	13, 52	7.40	1.87	0.056
Gypsum slag	1,4	14.92	53.83	0.002
Time	13, 52	45.19	69.93	< 0.001
Gypsum slag × Time	13, 52	1.69	2.62	0.007
Silicate and calcium fertilizer	1,4	47.10	56.19	0.002
Time	13, 52	42.78	37.73	< 0.001
Silicate and calcium fertilizer × Time	13, 52	1.75	1.55	0.133

CO ₂	pН	Eh	Temperature	Salinity	Water content	Fe ²⁺	Fe ³⁺	Total Fe
Control	-0.28*	0.148	0.815**	0.043	0.280*	0.353*	0.16	0.239
Steel slag	-0.176	0.208	0.867**	0.038	0.280*	0.241	0.122	0.18
Biochar	-0.357**	0.337*	0.807**	-0.179	0.278*	0.218	-0.05	0.025
Shell slag	-0.306*	0.287*	0.883**	-0.185	0.027	0.081	0.005	0.027
Gypsum slag	-0.327*	0.399**	0.832**	0.1	0.275*	0.217	0.11	0.155
Silicate and calcium fertilizer	-0.632**	0.301*	0.814**	0.17	0.461**	0.161	0.19	0.19
CH ₄								
Control	0.317*	-0.235	-0.47**	0.423**	0.277*	-0.235	-0.189	-0.222
Steel slag	0.244	-0.23	-0.114	0.652**	0.401**	-0.09	-0.146	-0.136
Biochar	-0.045	-0.001	-0.06	0.528**	0.385**	-0.014	-0.018	-0.018
Shell slag	0.288*	-0.149	-0.015	0.309*	0.601**	0.286*	0.208	0.238
Gypsum slag	0.332*	-0.216	-0.262*	0.270*	0.434**	0.439**	0.116	0.243
Silicate and calcium fertilizer	0.370**	-0.074	-0.166	0.527**	0.669**	0.259*	0.499**	0.439**
N ₂ O								
Control	0.14	-0.148	-0.185	0.199	0.113	-0.142	-0.094	-0.118
Steel slag	0.152	-0.226	-0.097	0.021	0.012	0.172	0.299*	0.273*

Table S4. Correlations between the soil properties and the greenhouse-gas emissions.

Biochar	0.18	-0.254	-0.43**	0.464**	0.077	-0.035	0.151	0.106
Shell slag	0.189	-0.088	-0.234	-0.078	-0.192	-0.021	0.028	0.015
Gypsum slag	-0.128	0.18	0.096	-0.177	-0.06	-0.102	0.011	-0.031
Silicate and calcium fertilizer	-0.022	0.172	-0.029	-0.202	-0.323*	-0.326*	-0.424**	-0.412**

*, significant at the 0.05 level; **, significant at the 0.01 level

Table S5. Test statistics for squared Mahalanobis distances among the plots receiving the

fertilization treatments with soil pH, Eh, temperature, salinity, water content, Fe^{2+} concentration, Fe^{3+} concentration and CO₂, CH₄ and N₂O emissions during the sampling period as independent

continuous variables and sampling time as the categorical independent variable. Sq. Mah. = Squared

Mahalanobis distances. Bold type indicates a significant effect of the variable in the model (P < 0.05).

	Steel slag	Biochar	Shell slag	Gypsum slag	Silicate plus calcium fertilizer
Control	Sq. Mah. = 7.68 P<0.0001	Sq. Mah. = 7.43 P<0.0001	Sq. Mah. = 6.65 P<0.0001	Sq. Mah. = 47.0 P<0.0001	Sq. Mah. = 17.9 <i>P</i> <0.0001
Steel slag		Sq. Mah. = 1.70 P = 0.11	Sq. Mah. = 3.59 P<0.0001	Sq. Mah. = 23.1 P<0.0001	Sq. Mah. = 4.12 P<0.0001
Biochar			Sq. Mah. = 0.660 <i>P</i> = 0.96	Sq. Mah. = 27.7 P<0.0001	Sq. Mah. = 5.51 P<0.0001
Shell slag				3 Sq. Mah. = 0.746 P<0.0001	Sq. Mah. = 7.65 P<0.0001
Gypsum slag				<u>.</u>	Sq. Mah. = 15.9 <i>P</i> <0.0001

- Table S6. Statistical significance of the independent variables in the general discriminant analysis with the fertilization treatments as the dependent categorical grouping variable. Bold type indicates
- significant differences (P<0.05).

Variable	Wilks' lambda Value	Р
рН	0.726	<0.00001
Eh	0.946	0.027
Temperature	0.973	0.29
Salinity	0.914	0.0011
Water content	0.336	<0.00001
Fe ²⁺	0.847	<0.00001
Fe ³⁺	0.844	<0.00001
CH4 emissions	0.823	<0.00001
CO ₂ emissions	0.934	0.0090
N ₂ O emissions	0.951	0.047
Time	0.263	<0.00001

Figure S1. The location of the study area and sampling sites (▲) in Fujian Province,
southeastern China.

Fig S3. Diagrams of the structural equation models comparing plots amended with steel slag versus the control plots that best explained the maximum variance of the soil CO₂ (A) and CH₄ (B) emissions and implying indirect effects from the amendment on the soil variables. Black and red arrows indicate positive and negative relationships, respectively.

- 104 Figure S4. Total, direct and indirect effects of exogenous variables (soil variables) of the SEM models of the plots amended with steel slag versus
- the control plots that best explained the maximum variance of the soil CO_2 (A) and CH_4 (B) emissions. Black and red columns indicate positive and negative relationships, respectively.

- 111 112
- 113 Figure S5. Diagrams of the structural equation models comparing plots amended with biochar versus the control plots that best explained the
- 114 maximum variance of the soil CO₂ (A), CH₄ (B) and N₂O (C) emissions and rice yields (D) and implying indirect effects from the amendment on
- 115 the soil variables. Black and red arrows indicate positive and negative relationships, respectively.

116

117 Figure S6. Total, direct and indirect effects of exogenous variables (soil variables) of the SEM models of plots amended with biochar versus the

- 118 control plots that best explained the maximum variance of the soil CO₂ (A), CH₄ (B) and N₂O (C) emissions and rice yields (D). Black and red
- 119 columns indicate positive and negative relationships, respectively.
- 120

Figure S7. Diagrams of the structural equation models comparing plots amended with shell slag versus the control plots that best explained the maximum variance of the soil CH₄ emissions and implying indirect effects from the effects of the amendment on the soil variables. Black and red arrows indicate positive and negative relationships, respectively.

129

130

Figure S8. Total, direct and indirect effects of exogenous variables (soil variables) of the SEM models comparing plots amended with shell slag versus the control plots that best explained the maximum variance of the soil CH₄ emissions. Black and red columns indicate positive and negative relationships, respectively.

Figure S9. Diagrams of the structural equation models comparing plots amended with 147 gypsum slag versus the control plots that best explained the maximum variance of the 148 149 soil CO₂ (A) and CH₄ (B) emissions and implying indirect effects from the effects of the amendment on the soil variables. Black and red arrows indicate positive and 150 negative relationships, respectively. 151

152

Figure S10. Total, direct and indirect effects of exogenous variables (soil variables) of the SEM models comparing plots amended with gypsum

- slag versus the control plots that best explained the maximum variance of the soil CO_2 (A) and CH_4 (B) emissions. Black and red arrows indicate
- 155 positive and negative relationships, respectively.

Figure S11. Diagrams of the structural equation models comparing plots amended with the silicate and calcium fertilizer versus the control plots that best explained the maximum variance of the soil CO_2 (A) and CH_4 (B) emissions and implying indirect effects from the effects of the amendment on the soil variables. Black and red arrows indicate positive and negative relationships, respectively.

- 164
- 165 Figure S12. Total, direct and indirect effects of exogenous variables (soil variables) of the SEM models comparing plots amended with the silicate
- and calcium fertilizer versus the control plots that best explained the maximum variance of the soil CO₂ (A) and CH₄ (B) emissions. Black and red
- 167 arrows indicate positive and negative relationships, respectively.

Figure

