11 research outputs found
A Robust GNSS/PDR Integration Scheme with GRU-Based Zero-Velocity Detection for Mass-Pedestrians
Aiming at the problem of high-precision positioning of mass-pedestrians with low-cost sensors, a robust single-antenna Global Navigation Satellite System (GNSS)/Pedestrian Dead Reckoning (PDR) integration scheme is proposed with Gate Recurrent Unit (GRU)-based zero-velocity detector. Based on the foot-mounted pedestrian navigation system, the error state extended Kalman filter (EKF) framework is used to fuse GNSS position, zero-velocity state, barometer elevation, and other information. The main algorithms include improved carrier phase smoothing pseudo-range GNSS single-point positioning, GRU-based zero-velocity detection, and adaptive fusion algorithm of GNSS and PDR. Finally, the scheme was tested. The root mean square error (RMSE) of the horizontal error in the open and complex environments is lower than 1 m and 1.5 m respectively. In the indoor elevation experiment where the elevation difference of upstairs and downstairs exceeds 25 m, the elevation error is lower than 1 m. This result can provide technical reference for the accurate and continuous acquisition of public pedestrian location information
Derivation of Vegetation Optical Depth and Water Content in the Source Region of the Yellow River using the FY-3B Microwave Data
This study uses the brightness temperature at the given microwave frequency (18.7 GHz) from the Microwave Radiation Imager (MWRI) on-board the Fengyun-3B (FY-3B) satellite to improve the τ-ω model by considering the radiative contribution from waterbody in the pixels over the wetland of the Yellow River source region, China. In order to retrieve vegetation optical depth (VOD), a dual-polarization slope parameter is defined to express the surface emissivity in the τ-ω model as the sum of soil emissivity and waterbody emissivity. In the regions with no waterbody, the original τ-ω model without considering waterbody impact is used to derive VOD. With use of the field observed vegetation water content (VWC) in the source region of the Yellow River during the summer of 2012, a regression relationship between VOD and VWC is established and then the vegetation parameter b is estimated. The relationship is employed to derive the spatial VWC during the entire vegetation growing period. The VOD retrieved is invalid and failed in some part of the study area by using the previous τ-ω model, while the results from the improved τ-ω model indicate that the VOD is in the range of 0.20 to 1.20 and the VWC is in the range of 0.20kg/m2 to 1.40kg/m2 in the entire source region of the Yellow River in 2012. Both VOD and VWC exhibit a pattern of low values in the west part and high values in the east part. The largest regional variations appear along the Yellow River. The comparison between the remote-sensing-estimated VWC and the ground-measured VWC gives the root mean square error of 0.12kg/m2. These assessments reveal that with considering the fractional seasonal wetlands in the source region of the Yellow River, the microwave remote sensing measurements from the FY-3B MWRI can be successfully used to retrieve the VWC in the source region of the Yellow River
Dynamic Adaptive Low Power Adjustment Scheme for Single-Frequency GNSS/MEMS-IMU/Odometer Integrated Navigation in the Complex Urban Environment
Positioning accuracy and power consumption are essential performance indicators of integrated navigation and positioning chips. This paper proposes a single-frequency GNSS/MEMS-IMU/odometer real-time high-precision integrated navigation algorithm with dynamic power adaptive adjustment capability in complex environments. It is implemented in a multi-sensor fusion navigation SiP (system in package) chip. The simplified INS algorithm and the simplified Kalman filter algorithm are adopted to reduce the computation load, and the strategy of adaptively adjusting the data rate and selecting the observation information for measurement update in different scenes and motion modes is combined to realize high-precision positioning and low power consumption in complex scenes. The performance of the algorithm is verified by real-time vehicle experiments in a variety of complex urban environments. The results show that the RMS statistical value of the overall positioning error in the entire road section is 0.312 m, and the overall average power consumption is 141 mW, which meets the requirements of real-time integrated navigation for high-precision positioning and low power consumption. It supports single-frequency GNSS/MEMS-IMU/odometer integrated navigation SiP chip in real-time, high-precision, low-power, and small-volume applications
Protective Effects of <i>Atractylodis lancea</i> Rhizoma on Lipopolysaccharide-Induced Acute Lung Injury via TLR4/NF-κB and Keap1/Nrf2 Signaling Pathways In Vitro and In Vivo
Acute lung injury (ALI) is a syndrome caused by an excessive inflammatory response characterized by intractable hypoxemia both inside and outside the lung, for which effective therapeutic drugs are lacking. Atractylodis rhizoma, a traditional Chinese medicine, has excellent anti-inflammatory and antiviral properties in addition to protecting the integrity of the cellular barrier. However, few studies of Atractylodis rhizoma for the treatment of ALI have been published, and its mechanism of action remains unclear. In the present study, the chemical composition of the ethanolic extract of Atractylodis rhizoma (EEAR) was initially clarified by high performance liquid chromatography (HPLC), after which it was studied in vivo using a lipopolysaccharide (LPS)-induced ALI rat model. Treatment with EEAR significantly reduced the lung wet/dry (W/D) ratio, neutrophil infiltration, and malondialdehyde (MDA) and myeloperoxidase (MPO) formation, and enhanced superoxide dismutase (SOD) and glutathione (GSH) depletion in rats with ALI, thereby improving lung barrier function and effectively reducing lung injury. In addition, EEAR significantly reduced histopathological changes, decreased the expression of inflammatory factors (such as tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), inducible nitric oxide synthase (INOS), and cyclooxygenase-2 (COX-2)), and inhibited the activation of the NF-κB signaling pathway, thus reducing inflammation. In addition, EEAR was found to also reduce oxidative stress in ALI by upregulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins heme oxygenase-1 (HO-1) and NADPH quinone acceptor oxidoreductase 1 (NQO-1). EEAR also reduced LPS-induced inflammatory factor expression in THP-1 cells in vitro by inhibition of the NF-κB signaling pathway, and reduced damage from lipopolysaccharide (LPS)-induced oxidative stress in THP-1 cells by promoting the expression of Nrf2 and its downstream targets HO-1 and NQO-1, the molecular mechanism of which was consistent with in vivo observations. Therefore, we conclude that EEAR attenuates oxidative stress and inflammatory responses via TLR4/NF-κB and Keap1/Nrf2 signaling pathways to alleviate LPS-induced ALI, suggesting that Atractylodis rhizoma is a potential drug candidate for the treatment of ALI
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments.
While hypoxia promotes carcinogenesis, tumour aggressiveness, metastasis, and resistance to oncological treatments, the impacts of hyperoxia on tumours are rarely explored because providing a long-lasting oxygen supply in vivo is a major challenge. Herein, we construct micro oxygen factories, namely, photosynthesis microcapsules (PMCs), by encapsulation of acquired cyanobacteria and upconversion nanoparticles in alginate microcapsules. This system enables a long-lasting oxygen supply through the conversion of external radiation into red-wavelength emissions for photosynthesis in cyanobacteria. PMC treatment suppresses the NF-kB pathway, HIF-1α production and cancer cell proliferation. Hyperoxic microenvironment created by an in vivo PMC implant inhibits hepatocarcinoma growth and metastasis and has synergistic effects together with anti-PD-1 in breast cancer. The engineering oxygen factories offer potential for tumour biology studies in hyperoxic microenvironments and inspire the exploration of oncological treatments
Mussel-Inspired Polydopamine-Coated Lanthanide Nanoparticles for NIR-II/CT Dual Imaging and Photothermal Therapy
Nanomedicine
has attracted substantial attention for the accurate diagnosis or
treatment of carcinoma in recent years. Nd<sup>3+</sup>-doped lanthanide
nanophosphor-based near-infrared-II (NIR-II) optical imaging is widely
used for deep penetration tissue imaging while X-ray computed tomography
(CT) is well-suited for in vivo imaging. Polymer-coated lanthanide
nanophosphors are increasingly used in both diagnostics and therapies
for tumor in vivo. However, the biocompatibility of nanocomposites
and the efficiency of tumor ablation should be taken into consideration
when constructing a nanotheranostic probe. In this article, we have
fabricated polydopamine (PDA)-coated NaYF<sub>4</sub>:Nd<sup>3+</sup>@NaLuF<sub>4</sub> nanocomposites using the reverse microemulsion
approach. The thickness of the PDA shell can be precisely modulated
from ∼1.5 to ∼18 nm, endowing the obtained NaYF<sub>4</sub>:Nd<sup>3+</sup>@NaLuF<sub>4</sub>@PDA with an excellent colloidal
stability and considerable biocompatibility. The photothermal conversion
efficiency of the resultant nanocomposites was optimized and maximized
by the increase of the PDA shell thickness. Because of the remarkable
photothermal conversion efficiency, the mice xenograft tumors were
completely eradicated after NIR irradiation. Given the considerable
photoluminescence and X-ray attenuation efficiency, the performance
of NaYF<sub>4</sub>:Nd<sup>3+</sup>@NaLuF<sub>4</sub>@PDA for NIR-II
optical imaging and X-ray CT dual imaging of the tumor in vivo was
evaluated. All of the results above highlight the great potential
of PDA-based NaYF<sub>4</sub>:Nd<sup>3+</sup>@NaLuF<sub>4</sub> nanocomposites
as a novel multifunctional nanotheranostic agent