46 research outputs found
Novelties of solid-liquid phase transfer catalyzed synthesis of benzyl diethyl phosphate from the sodium salt of diethyl phosphate
Solid-liquid phase transfer catalysis coupled with mixed solvents, which could be recycled, as a green chemistry procedure, was applied to the synthesis of phosphate from the sodium salt of diethyl phosphate. The benzyl diethyl phosphate was synthesized in good yield via one-pot method from the reaction of the industrial by-product sodium salt of diethyl phosphate with benzyl chloride in solid-liquid phase transfer catalysis and toluene-water mixed solvents. The effects of catalyst structure, the amounts of catalyst, the raw material molar ratio, water loading, and reaction temperature on the conversion of the reaction were investigated. The structure of the benzyl diethyl phosphate generated was confirmed by Elemental Analysis, IR, 1H NMR and GC/MS
Sirt1 coordinates with ERα to regulate autophagy and adiposity
Sex difference in adiposity has long been recognized but the mechanism remains incompletely understood. Previous studies suggested that adiposity was regulated by autophagy in response to energy status change. Here, we show that the energy sensor Sirt1 mediates sex difference in adiposity by regulating autophagy and adipogenesis in partnership with estrogen receptor α (ERα). Autophagy and adipogenesis were suppressed by Sirt1 activation or overexpression, which was associated with reduced sex difference in adiposity. Mechanistically, Sirt1 deacetylated and activated AKT and STAT3, resulting in suppression of autophagy and adipogenesis via mTOR-ULK1 and p55 cascades. ERα induced Sirt1 expression and inhibited autophagy in adipocytes, while silencing Sirt1 reversed the effects of ERα on autophagy and promoted adipogenesis. Moreover, Sirt1 deacetylated ERα, which constituted a positive feedback loop in the regulation of autophagy and adiposity. Our results revealed a new mechanism of Sirt1 regulating autophagy in adipocytes and shed light on sex difference in adiposity
Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping
Superionic thermoelectric materials have been shown to have high figure-of-merits, leading to expectations for efficient high-temperature thermoelectric generators. These compounds exhibit extremely high cation diffusivity, comparable to that of a liquid, which is believed to be associated with the low thermal conductivity that makes superionic materials good for thermoelectrics. However, the superionic behavior causes cation migration that leads to device deterioration, being the main obstacle for practical applications. It has been reported that lithium doping in superionic Cu_(2−x)Se leads to suppression of the Cu ion diffusivity, but whether the material will retain the promising thermoelectric properties had not yet been investigated. Here, we report a maximum zT>1.4 from Li_(0.09)Cu_(1.9)Se, which is higher than what we find in the undoped samples. The high temperature effective weighted mobility of the doped sample is found higher than Cu_(2−x)Se, while the lattice thermal conductivity remains similar. We find signatures of suppressed bipolar conduction due to an enlarged band gap. Our findings set forth a possible route for tuning the stability of superionic thermoelectric materials
Targeted Expression of Cre Recombinase Provokes Placental-Specific DNA Recombination in Transgenic Mice
Background: Inadequate placental development is associated with a high incidence of early embryonic lethality and serious pregnancy disorders in both humans and mice. However, the lack of well-defined trophoblast-specific gene regulatory elements has hampered investigations regarding the role of specific genes in placental development and fetal growth. Principal Findings: By random assembly of placental enhancers from two previously characterized genes, trophoblast specific protein a (Tpbpa) and adenosine deaminase (Ada), we identified a chimeric Tpbpa/Ada enhancer that when combined with the basal Ada promoter provided the highest luciferase activity in cultured human trophoblast cells, in comparison with non-trophoblast cell lines. We used this chimeric enhancer arrangement to drive the expression of a Cre recombinase transgene in the placentas of transgenic mice. Cre transgene expression occurred throughout the placenta but not in maternal organs examined or in the fetus. Significance: In conclusion, we have provided both in vitro and in vivo evidence for a novel genetic system to achieve placental transgene expression by the use of a chimeric Tpbpa/Ada enhancer driven transgene. The availability of thi
PIBM: Particulate immersed boundary method for fluid-particle interaction problems
It is well known that the number of particles should be scaled up to enable industrial scale simulation. The calculations are more computationally intensive when the motion of the surrounding fluid is considered. Besides the advances in computer hardware and numerical algorithms, the coupling scheme also plays an important role on the computational efficiency. In this study, a particulate immersed boundary method (PIBM) for simulating the fluid–particle multiphase flow was presented and assessed in both two- and three-dimensional applications. The idea behind PIBM derives from the conventional momentum exchange-based Immersed Boundary Method (IBM) by treating each Lagrangian point as a solid particle. This treatment enables Lattice Boltzmann Method (LBM) to be coupled with fine particles residing within a particular grid cell. Compared with the conventional IBM, dozens of times speedup in two-dimensional simulation and hundreds of times in three-dimensional simulation can be expected under the same particle and mesh number. Numerical simulations of particle sedimentation in Newtonian flows were conducted based on a combined LBM–PIBM–Discrete Element Method (DEM) scheme, showing that the PIBM can capture the feature of particulate flows in fluid and is indeed a promising scheme for the solution of the fluid–particle interaction problems
Effect of Titanium Alloying on the Microstructure and Properties of High Manganese Steel
The test used casting process to alloy the traditional high manganese steel with adding Ti. The surface morphology of the high manganese steel sample was observed by the scanning electron microscopy.At the same time, the hardness, the tensile strength and the wear resistance of the sample were tested. Compared with the high manganese steel without alloying, it studied the micro-structure and properties of modified high manganese steel . The results show that the grain of high manganese steel alloyed by titanium alloy is refined, the inclusions is dispersed and their size is reduced. The hardness of high manganese steel is increased by 87 %~263 %, but the tensile strength is reduced. Compared with the sample without added titanium element, the wear resistance of the alloyed high manganese steel is significantly improved
S100A6 promotes proliferation and migration of HepG2 cells via increased ubiquitin-dependent degradation of p53
S100A6 protein (calcyclin), a small calcium-binding protein of the S100 family, is
often upregulated in various types of cancers, including hepatocellular carcinoma
(HCC). The aim of this study was to illustrate the molecular mechanism of S100A6
in regulating the proliferation and migration of HCC cells
Effect of Titanium Alloying on the Microstructure and Properties of High Manganese Steel
The test used casting process to alloy the traditional high manganese steel with adding Ti. The surface morphology of the high manganese steel sample was observed by the scanning electron microscopy.At the same time, the hardness, the tensile strength and the wear resistance of the sample were tested. Compared with the high manganese steel without alloying, it studied the micro-structure and properties of modified high manganese steel . The results show that the grain of high manganese steel alloyed by titanium alloy is refined, the inclusions is dispersed and their size is reduced. The hardness of high manganese steel is increased by 87 %~263 %, but the tensile strength is reduced. Compared with the sample without added titanium element, the wear resistance of the alloyed high manganese steel is significantly improved