148 research outputs found

    Feedback between carbon and nitrogen cycles during the Ediacaran Shuram excursion

    Get PDF
    This research is supported by the National Natural Science Foundation of China (41872032, 41830215, 41930320) and the Chinese ‘111’ project (B20011).The middle Ediacaran Period records one of the deepest negative carbonate carbon isotope (ÎŽ13Ccarb) excursions in Earth history (termed the Shuram excursion). This excursion is argued by many to represent a large perturbation of the global carbon cycle. If true, this event may also have induced significant changes in the nitrogen cycle, because carbon and nitrogen are intimately coupled in the global ocean. However, the response of the nitrogen cycle to the Shuram excursion remains ambiguous. Here, we reported high resolution bulk nitrogen isotope (ÎŽ15N) and organic carbon isotope (ÎŽ13Corg) data from the upper Doushantuo Formation in two well-preserved sections (Jiulongwan and Xiangerwan) in South China. The Shuram-equivalent excursion is well developed in both localities, and our results show a synchronous decrease in ÎŽ15N across the event. This observation is further supported by bootstrapping simulations taking into account all published ÎŽ15N data from the Doushantuo Formation. Isotopic mass balance calculations suggest that the decrease in ÎŽ15N during the Shuram excursion is best explained by the reduction of isotopic fractionation associated with water column denitrification (Δwd) in response to feedbacks between carbon and nitrogen cycling, which were modulated by changes in primary productivity and recycled nutrient elements through remineralization of organic matter. The study presented here thus offers a new perspective for coupled variations in carbon and nitrogen cycles and sheds new light on this critical time in Earth history.Publisher PDFPeer reviewe

    Growth of the Tian Shan drives migration of the conglomerate-sandstone transition in the southern Junggar foreland basin

    Get PDF
    International audienceIn an orogenic belt-foreland basin setting, sediments from the mountain are transported downstream and accumulate in foreland basins. Sediments routing through the network of rivers display downstream grain size fining due to sorting and abrasion (Paola et al., 1992). A grain size transition from gravel to sand, termed the gravel-sand transition (GST; Ferguson et al., 1996), occurs in a short downstream distance from the sediment source. The GST is preserved in the stratigraphy of a sedimentary basin as the conglomerate-sandstone transition (CST; e.g., Dubille & Lavé, 2015). The position of the CST in a foreland basin succession is determined by basin subsidence, sediment supply, and grain size (Allen et al., 2013; Armitage et al., 2011), and all these factors depend on the interactions of tectonics in the adjacent mountains and regional climate (Dingle et al., 2016, 2017; Duller et al., 2010; Quick et al., 2020). The propagation of the orogenic wedge toward to the foreland drives the forelandward migration of the coupled foreland basin system as well as sedimentary facies (Flemings & Jordan, 198

    The impact of social comparison on the neural substrates of reward processing: An event-related potential study

    Get PDF
    Event-related potentials (ERPs) were recorded to explore the electrophysiological correlates of reward processing in the social comparison context when subjects performed a simple number estimation task that entailed monetary rewards for correct answers. Three social comparison stimulus categories (three relative reward levels/self reward related to the other subject\u27s) were mainly prepared: Self:Other=1:2 (Disadvantageous inequity condition); Self:Other=1:1 (Equity condition); and Self:Other=2:1 (Advantageous inequity condition). Results showed that: both Disadvantageous and Advantageous inequity elicited a more negative ERP deflection (N350–550) than did Equity between 350 and 550 ms, and the generators of N350–550 were localized near the parahippocampal gyrus and the medial frontal/anterior cingulate cortex, which might be related to monitor and control reward prediction error during reward processing. Then, Disadvantageous and Advantageous inequity both elicited a more late negative complex (LNC1 and LNC2) than did Equity between 550 and 750 ms. The generators of LNC1 and LNC2 were both localized near the caudate nucleus, which might be related to reward processing under social comparison

    Refined system parameters and TTV study of transiting exoplanetary system HAT-P-20

    Get PDF
    This work is supported by National Natural Science Foundation of China through grants No. U1531121, No. 10873031 and No. 11473066.We report new photometric observations of the transiting exoplanetary system HAT-P-20, obtained using CCD cameras at Yunnan Observatories and Ho Koon Nature Education cum Astronomical Centre, China, from 2010 to 2013, and Observatori Ca l'Ou, Sant Marti Sesgueioles, Spain, from 2013 to 2015. The observed data are corrected for systematic errors according to the coarse de-correlation and SYSREM algorithms, so as to enhance the signal of the transit events. In order to consistently model the star spots and transits of this exoplanetary system, we develop a highly efficient tool STMT based on the analytic models of Mandel & Agol and Montalto et al. The physical parameters of HAT-P-20 are refined by homogeneously analyzing our new data, the radial velocity data, and the earlier photometric data in the literature with the Markov chain Monte Carlo technique. New radii and masses of both host star and planet are larger than those in the discovery paper due to the discrepancy of the radius among K-dwarfs between predicted values by standard stellar models and empirical calibration from observations. Through the analysis of all available mid-transit times calculated with the normal model and spotted model, we conclude that the periodic transit timing variations in these transit events revealed by employing the normal model are probably induced by spot crossing events. From the analysis of the distribution of occulted spots by HAT-P-20b, we constrain the misaligned architecture between the planetary orbit and the spin of the host star.Publisher PDFPeer reviewe

    Dysregulation of sphingolipid metabolism in pain

    Get PDF
    Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain

    Generation of Transgene-Free Maize Male Sterile Lines Using the CRISPR/Cas9 System

    Get PDF
    Male sterility (MS) provides a useful breeding tool to harness hybrid vigor for hybrid seed production. It is necessary to generate new male sterile mutant lines for the development of hybrid seed production technology. The CRISPR/Cas9 technology is well suited for targeting genomes to generate male sterile mutants. In this study, we artificially synthesized Streptococcus pyogenes Cas9 gene with biased codons of maize. A CRISPR/Cas9 vector targeting the MS8 gene of maize was constructed and transformed into maize using an Agrobacterium-mediated method, and eight T0 independent transgenic lines were generated. Sequencing results showed that MS8 genes in these T0 transgenic lines were not mutated. However, we detected mutations in the MS8 gene in F1 and F2 progenies of the transgenic line H17. A potential off-target site sequence which had a single nucleotide that was different from the target was also mutated in the F2 progeny of the transgenic line H17. Mutation in the MS8 gene and the male sterile phenotype could be stably inherited by the next generation in a Mendelian fashion. Transgene-free ms8 male sterile plants were obtained by screening the F2 generation of male sterile plants, and the MS phenotype could be introduced into other elite inbred lines for hybrid production

    Starch-assisted synthesis of polypyrrole nanowires by a simple electrochemical approach

    Get PDF
    Starch, one of the most commonly used polysaccharides, has been adopted for the first time as morphology-directing agent to the electrochemical synthesis of polypyrrole (PPy) nanowires on various electrodes

    Effects of Musical Tempo on Musicians’ and Non-musicians’ Emotional Experience When Listening to Music

    Get PDF
    Tempo is an important musical element that affects human’s emotional processes when listening to music. However, it remains unclear how tempo and training affect individuals’ emotional experience of music. To explore the neural underpinnings of the effects of tempo on music-evoked emotion, music with fast, medium, and slow tempi were collected to compare differences in emotional responses using functional magnetic resonance imaging (fMRI) of neural activity between musicians and non-musicians. Behaviorally, musicians perceived higher valence in fast music than did non-musicians. The main effects of musicians and non-musicians and tempo were significant, and a near significant interaction between group and tempo was found. In the arousal dimension, the mean score of medium-tempo music was the highest among the three kinds; in the valence dimension, the mean scores decreased in order from fast music, medium music, to slow music. Functional analyses revealed that the neural activation of musicians was stronger than those of non-musicians in the left inferior parietal lobe (IPL). A comparison of tempi showed a stronger activation from fast music than slow music in the bilateral superior temporal gyrus (STG), which provided corresponding neural evidence for the highest valence reported by participants for fast music. Medium music showed stronger activation than slow music in the right Heschl’s gyrus (HG), right middle temporal gyrus (MTG), right posterior cingulate cortex (PCC), right precuneus, right IPL, and left STG. Importantly, this study confirmed and explained the connection between music tempo and emotional experiences, and their interaction with individuals’ musical training
    • 

    corecore