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The middle Ediacaran Period records one of the deepest negative carbonate carbon
isotope (δ13Ccarb) excursions in Earth history (termed the Shuram excursion). This
excursion is argued by many to represent a large perturbation of the global carbon
cycle. If true, this event may also have induced significant changes in the nitrogen cycle,
because carbon and nitrogen are intimately coupled in the global ocean. However, the
response of the nitrogen cycle to the Shuram excursion remains ambiguous. Here, we
reported high resolution bulk nitrogen isotope (δ15N) and organic carbon isotope (δ13Corg)
data from the upper Doushantuo Formation in two well-preserved sections (Jiulongwan
and Xiangerwan) in South China. The Shuram-equivalent excursion is well developed in
both localities, and our results show a synchronous decrease in δ15N across the event.
This observation is further supported by bootstrapping simulations taking into account all
published δ15N data from the Doushantuo Formation. Isotopic mass balance calculations
suggest that the decrease in δ15N during the Shuram excursion is best explained by the
reduction of isotopic fractionation associated with water column denitrification (εwd) in
response to feedbacks between carbon and nitrogen cycling, which were modulated by
changes in primary productivity and recycled nutrient elements through remineralization of
organic matter. The study presented here thus offers a new perspective for coupled
variations in carbon and nitrogen cycles and sheds new light on this critical time in Earth
history.
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INTRODUCTION

Unraveling the global carbon cycle in deep time of Earth history mostly relies on the analyses of
carbon isotope compositions in carbonate rocks (δ13Ccarb) and organic matter (δ13Corg) (Kump and
Arthur, 1999). With the expansion of δ13Ccarb datasets over the past 2 decades (cf. Lyons et al., 2014),
a general δ13Ccarb picture from the Archean to present has become evident. A major feature of this
curve is that the magnitude of isotopic variation in the Precambrian is much larger than that of the
Phanerozoic, as exemplified by the notable Shuram negative δ13Ccarb excursion documented in the
middle Ediacaran (Burns and Matter, 1993; Fike et al., 2006; Le Guerroué et al., 2006a, 2006b). This
excursion and its possible equivalents are widely distributed in Ediacaran successions all over the
world and have been generally used as a tie-point for the stratigraphic correlations across different
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continents (Jiang et al., 2007; Zhu et al., 2007; Halverson et al.,
2010; Grotzinger et al., 2011; Wang et al., 2012; Lu et al., 2013;
Husson et al., 2015;Wang et al., 2016; Zhou et al., 2017), although
whether they are truly synchronous remains to be tested
independently by precise radiometric ages (Grotzinger et al.,
2011; Zhou et al., 2017).

Among all negative δ13Ccarb excursions from the Archean to
Phanerozoic, the Shuram excursion is remarkable for two
reasons: first, it is one of the largest negative excursions in
Earth history, with δ13Ccarb decreasing from +5‰ to as low as
−12‰ (Grotzinger et al., 2011); second, it may have lasted for
millions of years (∼5–50 Myr) before returning to positive values
(Le Guerroué et al., 2006a, 2006b; Bowring et al., 2007; Jiang et al.,
2007; Cui et al., 2015; Sui et al., 2019; Canfield et al., 2020; Gong
and Li, 2020; Rooney et al., 2020). The anomalously low δ13Ccarb

values (down to −12‰) during the Shuram excursion are below
the mantle-derived carbon isotope value of −6‰ (Melezhik et al.,
2005) and can therefore not be readily explained by the
conventional steady-state mass balance model of carbon
isotopes (Kump and Arthur, 1999). Several non-steady-state
models link the Shuram excursion to the rise of oxygen in the
atmosphere-ocean system, which may have resulted in the
oxidation of an inferred large dissolved organic carbon (DOC)
reservoir in deep ocean (Rothman et al., 2003; Fike et al., 2006;
Jiang et al., 2007; McFadden et al., 2008) and/or other reduced
carbon sources, including terrestrial organic matter (Kaufman
et al., 2007; Shi et al., 2018), methane hydrates (Bjerrum and
Canfield, 2011) and expelled hydrocarbons (Lee et al., 2015).
These models imply that the Shuram excursion recorded the
primary isotopic composition of seawater, which is further
supported by a recent in situ carbon isotope study from the
Wonoka Formation in Australia (Husson et al., 2020). These
hypotheses have been challenged on the basis that the oxidant
budget may have been insufficient if the Shuram excursion lasted
for more than 5 Myr (Bristow and Kennedy, 2008); however,
recent biogeochemical modeling results suggest that the oxidants
required for the oxidiation of DOC could have derived from the
weathering of sulfate evaporites (Shields et al., 2019).
Alternatively, the Shuram excursion has been interpreted as
reflecting secondary processes such as meteoric alteration
(Knauth and Kennedy, 2009; Swart and Kennedy, 2012),
burial diagenesis (Derry, 2010), or the contribution from
authigenic carbonates (Schrag et al., 2013; Cui et al., 2017;
Jiang et al., 2019). However, these diagenetic processes, which
are essentially local phenomena, are difficult to reconcile with the
global distribution of the Shuram excursion and its unique
occurrence in the Ediacaran (Grotzinger et al., 2011).
Additionally, Paulsen et al. (2017) argued that the Shuram
excursion may be partially attributed to extensive release of
mantle 12C-enriched carbon associated with carbonatite and
alkaline magmatism during the Ediacaran period, but the
extremely low δ13Ccarb values of the Shuram excursion still
require additional input from surface processes.

The carbon cycle has intimate relationships with the
nitrogen and oxygen cycles in the global ocean (Fennel
et al., 2005). Nitrogen is one of the major nutrient elements
required for all life. In the excess of bioavailable P, fixed N may

become an important limiting nutrient in the ocean and
thereby control the amount of carbon sequestered into
sediments and the rate of oxygen production through
photosynthesis (Falkowski, 1997; Tyrrell, 1999). Conversely,
the concentration of fixed N is mainly determined by the
balance between N2 fixation, the major pathway of N into
aquatic ecosystems, and the reconversion of fixed nitrogen to
N2 gas mainly via denitrification (stepwise reduction of nitrate
to N2) and anammox (coupled oxidation of ammonium with
reduction of nitrite) (Sigman et al., 2009; Devol, 2015), which
in turn is largely dependent on the ocean redox structure
(Quan et al., 2013; Ader et al., 2016; Stüeken et al., 2016).
During denitrification, organic matter is an important electron
donor (Sigman et al., 2009), although it can be replaced by
ferrous Fe(II) or hydrogen sulfide (H2S) (Lam and Kuypers,
2011; Michiels et al., 2017). Coupled nitrate (NO3

−) reduction
and the oxidation of organic matter through denitrification
would result in the transformation of 12C-enriched organic
carbon to inorganic carbon, and the preferential release of light
14N to the atmosphere, thereby elevating the δ15N in the fixed
N pool and lowering the δ13C of the dissolved inorganic carbon
pool (Sigman et al., 2009; Kump et al., 2011). Further, the
remineralization of organic matter in the oceans would release
the organic-bound N into seawater with limited nitrogen
isotopic fractionation (−1 to +2‰, Ader et al., 2016;
Stüeken et al., 2016), which could serve as new nutrient N
source to fuel productivity (Higgins et al., 2012; Xu et al.,
2020).

The Shuram excursion, if recording a large perturbation in
the carbon cycle, provides an excellent window into the
feedback between carbon, oxygen and nitrogen cycles in
deep time. However, the role of the nitrogen cycle in the
Shuram excursion has not been systematically investigated.
Kikumoto et al. (2014) reported nitrogen isotope data from the
Ediacaran to early Cambrian in a drill core in the Yangtze
Gorges area, South China, and found a coherent decrease in
δ15N along with the Shuram excursion in the upper
Doushantuo Formation (Locally named as N3, EN3 or
DOUNCE, Jiang et al., 2007; Zhou and Xiao, 2007; Zhu
et al., 2013). This negative δ15N excursion was interpreted
as evidence for an increased nitrate pool which may have
resulted in the partial assimilation of NO3

− (Kikumoto et al.,
2014; Nishizawa et al., 2019). Nitrogen isotope data have also
been reported from the other Ediacaran sections in South
China and other continents (e.g., Ader et al., 2014;
Spangenberg et al., 2014; Wang et al., 2017; Chen et al.,
2019; Lan et al., 2019; Nishizawa et al., 2019), but the
Shuram excursion is poorly developed or missing in these
sections. In this contribution, we report high resolution δ15N
and δ13Corg data from the upper Doushantuo Formation in two
sections (Jiulongwan and Xiangerwan) in the Yangtze Gorges
area, South China, where the Shuram-EN3 excursion is well
recorded (Jiang et al., 2007; An et al., 2015; Zhou et al., 2017).
The new data presented here, along with previous ones, will
shed new light on the origin of the Shuram excursion and the
coevolution of carbon and nitrogen cycles during this critical
interval.
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GEOLOGICAL SETTING AND STUDY
SECTIONS

The Ediacaran Doushantuo Formation was deposited in an
inferred passive continental margin setting along the southeast
part of the South China Block, following the termination of the
Marinoan glaciation (Wang and Li, 2003; Jiang et al., 2011). In the
Yangtze Gorges area, western Hubei Province, the Doushantuo
Formation in the stratotype (Jiulongwan) section can be divided
into four lithological members: Member I is a 3–5 m thick cap
carbonate, Member II is characterized by interlayered black shale
and muddy limestone with abundant centimeter-scaled chert
nodules, Member III is dominated by carbonate deposits, and
Member IV consists mainly of black shales with meter-scale
carbonate concretions (e.g., Jiang et al., 2011). Abundant
microfossils and macrofossils have been reported from the
Doushantuo Formation, providing a unique window into
eukaryotic evolution leading up to the Cambrian Explosion, as
well as a valuable tool for biostratigraphic subdivision (Liu et al.,
2014; Xiao et al., 2016; Zhou et al., 2019 and references therein).

Geochronologically, the depositional age of the Doushantuo
Formation has previously been constrained to ca. 635–551 Ma
based on U-Pb zircon dating (Condon et al., 2005; Zhang et al.,
2005). Regional stratigraphic correlation suggest that the ca.
551 Ma tuffaceous layer within the Miaohe Member, which
was traditionally correlated with Member IV, is likely located
in the overlying Dengying Formation (An et al., 2015), implying
that the upper boundary of the Doushantuo Formation is older
than 551 Ma. However, a more detailed investigation of δ13Ccarb

of multiple sections around the Huangling Anticline (Zhou et al.,
2017) and the δ13Corg study from theMiaohe member (Xiao et al.,
2017) argue against the correlation scheme proposed by An et al.
(2015).

Our samples were collected from the upper part of the
Doushantuo Formation in the Jiulongwan and Xiangerwan
sections in the Yangtze Gorges area (Figure 1). These two
sections were chosen for nitrogen isotope analyses due to the
excellent preservation of the Shuram-EN3 carbon isotope
excursion (Jiang et al., 2007; An et al., 2015; Zhou et al.,
2017). Paleogeographically, the two sections were both

FIGURE 1 | Simplified geological map in the Yangtze Gorges area (modified from An et al., 2015). Red stars show the locations of two study sections.
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FIGURE 2 | The geochemical profiles of δ13Ccarb, δ13Corg, δ15N, TOC, TN and MC/N spanning the Shuram-EN3 excursion in the Jiulongwan section. The data
points with dashed outline fall away from the general trend.

FIGURE 3 | The geochemical profiles of δ13Ccarb, δ13Corg, δ15N, TOC, TN and MC/N spanning the Shuram-EN3 excursion in the Xiangerwan section.

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 6781494

Xu et al. Nitrogen Cycling during Shuram Excursion

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


deposited in proximal settings of an intrashelf basin (Jiang et al.,
2011; An et al., 2015). The Jiulongwan section, located in the
southern part of the Huangling Anticline (Figure 1), has been
extensively studied to characterize the ocean redox structure (e.g.,
Jiang et al., 2007; McFadden et al., 2008; Li et al., 2010; Zhou et al.,
2012; Ling et al., 2013;Wei et al., 2018; Fan et al., 2020, 2021). The
upper Doushantuo Formation in the Jiulongwan section is
dominated by cherty dolostone, muddy limestone/dolostone
and black shales (Figure 2). The Shuram-EN3 excursion
begins in the middle part of Member III, continued upwards
through the rest of the Doushantuo Formation until return to
positive δ13Ccarb values at the Doushantuo/Dengying boundary
(Figure 2). The Xiangerwan section is located in the northwestern
part of the Huangling Anticline (Figure 1), about 60 km away
from the Jiulongwan section. The upper Doushantuo Formation
in this section is mainly composed of medium-thick bedded
dolostone, pink dolostone and thinly bedded limestone with
subordinate black shales (Figure 3). The pink dolostone was
interpreted as the precipitate of a primary marine red bed enabled
by ocean oxygenation (Song et al., 2017). The pattern of the
Shuram-EN3 excursion in the Xiangerwan section is similar to
that of the Jiulongwan section (Figure 3).

ANALYTICAL METHOD

We performed measurements of δ15N and δ13Corg, total nitrogen
(TN) contents, and total organic carbon (TOC) contents for 162
samples. Fresh sample chips without any weathering surfaces or
visible veins were ground into powders below 200 mesh in an
agate mortar. About 10 g of powders from each sample were
treated with 2 M excess HCl to ensure the complete removal of
carbonate. The carbonate-free samples were then rinsed with
deionized water multiple times until a near-neutral pH value was
reached. After centrifuging, the decarbonated sample residue was
dried at 70°C in an oven before analysis. The isotopic and
elemental compositions were measured in the Oxy-Anion
Stable Isotope Consortium (OASIC) at Louisiana State
University (LSU), using a Vario Microcube Elemental Analyzer
(EA) connected to an Isoprime 100 isotope ratio mass
spectrometer (IRMS). Because most of our samples are TOC-
lean carbonate rocks, approximately 50–100 mg sample powders
(based on TOC estimation) were wrapped in tin capsules and
combusted in the EA to enhance the N signal. The organic carbon
isotope compositions are reported as δ values with reference to
the Vienna Pee Dee Belemnite standard (VPDB). The nitrogen
isotope compositions are reported in standard δ notation in per
mil (‰) deviations from atmospheric N2 (0‰, Air). Reference
standard acetanilide-OASIC (δ13C � −27.62‰, δ15N � +1.61‰)
was used to calibrate the analytical results. Measurements of C
and N concentrations of blanks were below detection limits,
suggesting that contamination from capsules did not
contribute much to our results. A few samples (n � 10) with
N peaks much lower than that of the reference standard were
excluded from the dataset and from the discussion. The
reproducibility monitored by the reference material was better
than 0.1‰ for δ13Corg and 0.3‰ for δ15N.

RESULTS

The analytical results of δ15N, δ13Corg, TN, TOC and C/N are
shown in Figures 2, 3 and Supplementary Tables S1, S2. The
δ13Corg variations in the Jiulongwan section are well matched
with previously published data by McFadden et al. (2008)
(Figure 2). In the prelude and lower part of the Shuram-EN3
excursion, δ13Corg is relatively high and centers around −28‰. It
becomes more variable but shows an overall decreasing trend in
the rest of Member III. Low and stable δ13Corg values cluster
around -38‰ in the Member IV black shale. The δ15N data of our
samples in the Jiulongwan section largely overlap with those
reported from the equivalent interval in the nearby (within 3 km)
Wuhe drillcore (Figure 2; Kikumoto et al., 2014). Before the
Shuram-EN3 excursion, a few data points show relatively high
δ15N values from +5.4‰ to +6.7‰. During the main phase of the
Shuram-EN3 excursion, most of δ15N values fall in the range of
+3‰ to +5.5‰, except for a few outliers, with an average of
+3.8 ± 0.8‰ (n � 123) (Figure 2; this study; Kikumoto et al.,
2014). The variability in δ15N is independent of lithological
changes.

In the Xiangerwan section, δ13Corg does not show any clear
stratigraphic trend across the Shuram-EN3 excursion. It varies
between −30.3‰ and −26.7‰, with an average of −28.4 ± 0.7‰
(n � 49) (Figure 3). Variations in δ15N from this section generally
mirror the trend of δ13Ccarb reported by An et al. (2015), although
the magnitude of change is small (Figure 3). Prior to the Shuram-
EN3 excursion, δ15N varies from +3.0‰ to +4.7‰ and the mean
value is +4.0 ± 0.6‰ (n � 6). During the main stage of excursion,
most samples have δ15N values between +2.0‰ and +3.8‰. The
average value (+2.5 ± 0.4‰, n � 43) is about 1.5‰ lower than that
of the pre-excursion interval. An increase of δ15N relative to pre-
excursion values is observed in the upper Doushantuo Formation,
coincident with the rising branch of the Shuram-EN3 excursion.
Overall, the δ15N values from the Xiangerwan section are 1–2‰
lower than those from the Jiulongwan section.

DISCUSSION

Evaluation of the Preservation of Primary
Isotopic Signals
Whether δ15N and δ13Corg in sedimentary rocks record primary
autochthonous signatures is dependent on several factors,
including paleogeographic setting, diagenesis, metamorphism,
and potential contributions of allochthonous materials (Ader
et al., 2009; Ader et al., 2016; Robinson et al., 2012; Stüeken
et al., 2016). In modern oceans, sedimentary δ15N of organic
matter may show large offsets compared to sinking organic
particles at sites located off continental margins due to
extended remineralization of organic matter in the water
column and upper sediment. In contrast, on continental
shelves with high sediment accumulation rates and/or organic
matter content, sedimentary organic matter generally displays
δ15N values similar to that of sinking particles (Robinson et al.,
2012). The two study sections were deposited in shallow shelf
environments (Jiang et al., 2011; An et al., 2015), minimizing this
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effect on sedimentary δ15N as well as δ13Corg. However
subsequent biological decomposition and thermal maturation
of sedimentary organic matter during early and burial
diagenesis can still perturb the original δ15N and δ13Corg

values (Ader et al., 2009; Ader et al., 2016; Stüeken et al.,
2016). Several lines of evidence, however, argue against these
processes as major controls on our data. First, the isotopic
alteration by biological decomposition during early diagenesis
is generally small for δ13Corg (Ader et al., 2009 and references
therein). Although this effect could be large for δ15N (up to 4‰)
when bottom water was oxic (Altabet et al., 1999; Freudenthal
et al., 2001; Lehmann et al., 2002; Prokopenko et al., 2006), Fe
speciation data, I/(Ca + Mg) ratios and Ce anomales (Ce/Ce*)
from the Jiulongwan and Xiangerwan sections indicate oxygen-
depleted bottom water conditions (Li et al., 2010; Zhou et al.,
2012; Ling et al., 2013; Wei et al., 2019). Second, Raman spectra
and equivalent vitrinite reflectance data suggested that the peak
heating temperature of the Doushantuo Formation was <300°C
(Chang et al., 2020), and at such low metamorphic grade thermal
alterations of isotopic composition would be limited for both
δ15N and δ13Corg (Ader et al., 2009; Ader et al., 2016; Stüeken
et al., 2016; Stüeken et al., 2017). Lastly, if the original δ13Corg and
δ15N were largely modified by the preferential loss of light 12C
and/or 14N during early and burial diagenesis, one would expect

correlation between δ15N, TN, C/N, and δ13Corg as well as δ13Corg

and TOC. No significant correlations, however, are observed
between these parameters (Figure 4). A subset of samples
show a negative correlation between δ13Corg and TOC
commonly seen in Precambrian rocks, but the reason of this is
unknown based on current research and warrants further
investigation.

The addition of material from allochthonous sources is
another factor that can affect sedimentary δ13Corg and δ15N.
These allochthonous sources include hydrothermal fluids and
detrital input. Hydrothermal fluids are unlikely to increase the
organic carbon to sedimentary rocks, but they could contain
some inorganic N that can be trapped by sedimentary clay when
moving along the fractures, thereby affecting the bulk δ15N (e.g.,
Zerkle et al., 2017; Luo et al., 2018). However, no clear correlation
is observed between potassium abundance (Wang, 2019) and
δ15N and in the Xiangerwan section (Figure 5A), suggesting that
exchange with hydrothermal fluids was limited and did not
severely bias our δ15N values. For sedimentary rocks with low
authigenic TOC contents, detrital organic matter could be a
major component and overprint the primary δ13Corg (Jiang
et al., 2010). It is difficult to quantify the contribution of
detrital organic matter and detrital clay-bound N to our
samples; however, δ15N, δ13Corg and TOC do not show

FIGURE 4 | Cross plots of TN vs. δ15N (A), C/N vs. δ15N (B), δ13Corg vs. δ15N (C), and δ13Corg vs. TOC (D) in study sections.
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correlations with Al content in the Xiangerwan section (Wang,
2019)─an indicator of detrital input (Figures 5B–D–D).
Therefore, we suggest that detrital input did not significantly
affect our data. Nevertheless, this question can be further clarified
in a future dedicated study.

Variations of δ15N-δ13Ccarb Pattern in the
Upper Doushantuo Formation
The upper Doushantuo Formation in South China is
characterized by a prominent negative δ13Ccarb excursion (N3,
EN3 or DOUNCE) that is widely accepted to be equivalent to the
Shuram excursion (Jiang et al., 2007; Zhou and Xiao, 2007; Zhu
et al., 2007; Zhu et al., 2013; McFadden et al., 2008; Wang et al.,
2012; Lu et al., 2013; An et al., 2015; Wang et al., 2016; Li et al.,
2017; Zhou et al., 2017; Wei et al., 2019). Although the Shuram-
EN3 excursion has a wide paleogeographic distribution from the
inner shelf to upper slope setting, it shows large spatial variations
in its pattern, magnitude and stratigraphic coverage (Wang et al.,
2016; Zhou et al., 2017). In some sections, this excursion is
completely absent (Zhou et al., 2017). The discrepancy of the
Shuram-EN3 excursion between different sections has been
attributed to facies change, stratigraphic truncation, the

diachronous nature of the Doushantuo/Dengying boundary
and/or diagenetic overprinting of primary isotope signatures
(Cui et al., 2015; Wang et al., 2016; Zhou et al., 2017).

δ15N data for the Ediacaran Doushantuo Formation were first
reported from the Wuhe drillcore in Yangtze Gorges area by
Kikumoto et al. (2014). They found a synchronous decrease in
δ15N from ca. +6‰ to ca. +3.2‰ along with the Shuram-EN3
excursion (Figure 6B; Kikumoto et al., 2014). Our new δ15N data
from the upper Doushantuo Formation in the Jiulongwan
section, which is <3 km away from the Wuhe drillcore, are
well consistent with the trend reported by Kikumoto et al.
(2014) when excluding a few outliers (Figure 6B). In the inner
shelf Xiangerwan section about 60 km north of the Jiulongwan
section, the Shuram-EN3 excursion is well developed and shows
striking similarity with that in the Jiulongwan section (Figure 6A;
An et al., 2015). The δ15N data also mirror the trend observed in
the Wuhe drillcore, although the absolute values are overall
1–2‰ lower than those of the Wuhe drillcore both before and
during the Shuram-EN3 excursion. The δ15N-δ13Ccarb pattern
from the upper Doushantuo Formation in the outer shelf
Wangjiapeng drillcore section shows some differences
compared to the Wuhe (Jiulongwan) and Xiangerwan sections
(Figure 6C; Lan et al., 2019). The Shuram-EN3 excursion in this

FIGURE 5 |Cross plots of K2O vs. δ15N (A), Al2O3 vs. δ15N (B), Al2O3 vs. TOC (C), and Al2O3 vs. δ13Corg (D) in the Xiangerwan section. The Al2O3 and K2O data are
from Wang (2019).
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section is marked by a sharp decrease of δ13Ccarb to a minimum
value of −5.4‰, followed by a quick return to positive values,
while the associated δ15N in this interval shows an opposite
(increasing) trend. It should be noted that δ15N in the
Wangjiapeng section shows a small negative excursion in the
‘uppermost’ Doushantuo Formation, clearly postdating the
Shuram-EN3 excursion (Lan et al., 2019). Whether this
negative δ15N excursion can be correlated with that in the
Wuhe and Xiangerwan sections is questionable and requires
further investigation.

In the Yangjiaping section on the shelf margin, Ediacaran
δ13Ccarb data were reported by several research groups (Zhu et al.,
2007; Ader et al., 2009; Kunimitsu et al., 2011; Cui et al., 2015).

Here the Shuram-EN3 excursion spans the upper Doushantuo
Formation and the lower part of the overlying Dengying
Formation, but the data show large sample-to-sample
variations (Wang et al., 2016). A few δ15N data points from
this interval show a decreasing trend from ∼ +4.3‰ to ∼ +3.0‰
(Figure 6D; Ader et al., 2014). More data are needed to confirm
this variation. Chen et al. (2019) reported δ15N data from the
Doushantuo Formation in an upper slope drill core section (zk
2012) in the Daotuo area, northeastern Guizhou Province. A
conspicuous decline in δ15N was observed in the upper
Doushantuo Formation (Figure 6E; Chen et al., 2019).
Although no δ13Ccarb data were reported in zk 2012, the
δ13Ccarb profile from an adjacent drill core verifies the

FIGURE 6 | Correlation of δ15N variations across the Shuram-EN3 excursion in different sections.
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presence of the Shuram-EN3 excursion in the upper Doushantuo
Formation (Wei et al., 2019). Coupled δ15N-δ13Ccarb data have
also been reported from the Lantian Formation in southern
Anhui, which is equivalent to the Doushantuo Formation
(Wang et al., 2017). The δ13Ccarb from this unit is dominated
by negative values and show a negative excursion in the upper

Lantian Formation that is considered to be correlative to the
Shuram excursion. However, the δ15N data from this interval do
not show a clear stratigraphic trend (Figure 6F; Wang et al.,
2017). In the basinal Fentan section, the Shruam-EN3 excursion
is documented in the upper Doushantuo Formation (Figure 6G;
Lu et al., 2013; Furuyama et al., 2017). In the same interval, the

FIGURE 7 | Bootstrap distribution of δ15N before and during the Shuram-EN3 excursion in the Xiangerean section (A), Jiulongwan section (B), Wangjiapeng drill
core (C), Yangjiaping section (D), Lantian drill core (E), Daotuo drill core (F), Fengtan section (G), and all sections (H).
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δ15N also show a clear decreasing trend from ∼ +4.5‰ to nadir
+0.7‰ (Figure 6G; Nishizawa et al., 2019). Recently, a δ15N study
was performed for the Doushantuo Formation in the proximal
E-Shan section (Peng et al., 2020), However, this section is not
included in our correlation (Figure 6) because the Dousantuo
Formation is dominated by siliciclastic rocks and do not contain
the Shuram excursion.

To better characterize the overall δ15N trend during this
critical time interval, we simulate the δ15N variations before
and during the Shuram excursion for each section using a
bootstrap resampling method. Out of seven sections, six
sections are characterized by a bimodal δ15N distribution
(Figure 7). Notably, although the δ15N data from the Lantian
section do not show a clear stratigraphic trend (Wang et al.,
2017), the model result indicates that δ15N during the Shuram
excursion are statistically 0.6‰ lower than prior to the excursion
(Figure 7E). In the Wangjiapeng section, the mean δ15N
distributions obtained from bootstrap resampling largely
overlap for pre- and syn-excursion strata (Figure 7C). This is
likely due to a prominent negative δ15N excursion in the lower
part of the Doushantuo Formation (Lan et al., 2019). The bimodal
δ15N distribution becomes even more evident when the bootstrap
method is applied to all data from the seven sections (Figure 7H),
providing evidence for a synchronous decrease of δ15N associated
with the Shuram excursion. This covariation pattern could be
attributed to a feedback between nitrogen and carbon cycles that
will be discussed in the following section.

Feedback Between Nitrogen and Carbon
Cycles
Modeled results indicate that δ15N data from the Ediacaran
Doushantuo Formation show contrasting distributions before
and during the Shuram excursion (Figure 7). High δ15N values
from the lower-middle Doushantuo Formation prior to the Shuram
excursion have been attributed to incomplete denitrification that
preferentially removed light 14N from the ocean (Kikumoto et al.,
2014; Ader et al., 2014; Wang et al., 2017, 2018; Chen et al., 2019;
Lan et al., 2019; Xu et al., 2020). The decrease of δ15N associated
with the Shuram excursion was previously interpreted as partial
assimilation of NO3

− from an expanding nitrate pool in response to
a rise of oxygen levels in the ocean-atmosphere system, implying
that dissolved P rather than N was the limiting nutrient during the
excursion interval (Kikumoto et al., 2014; Nishizawa et al., 2019).
We challenge this explanation for the following reasons. First, if the
decrease in δ15N was caused by partial assimilation of NO3

−, the
15N-enriched residual NO3

− would be quantitatively utilized in
other parts of the basin. One should expect a positive δ15N
excursion in the upper Doushantuo Formation in some sections,
which, however, has not been observed in sections studied to date
(Figure 7); Second, the upper Doushantuo Formation contains
abundant phosphatized fossils and phosphorite deposits (Xiao et al.,
1998; Xiao et al., 2014; Liu et al., 2014; She et al., 2014; Yin et al.,
2015; Zhang Y. et al., 2019), possibly indicating high dissolved P
level in coeval seawater (e.g., Laakso et al., 2020). Thus, it is unlikely
that P was severely limited during the Shuram excursion.

Alternatively, the isotopic shift could have been caused by a
shift in the location of denitrification changes in the relative
proportions of water column denitrification vs. sedimentary
denitrification can affect the seawater δ15N and accordingly
sedimentary δ15N (Sigman et al., 2009; Algeo et al., 2014;
Stüeken et al., 2016). In the modern oceans, water column
denitrification accounts for 25–32% of total denitrification and
is generally accompanied by large isotope fractionation (ε ≈
δ15Nreactant - δ15Nproduct). The remaining 68–75% of
denitrification occurs within sedimentary porewaters with
small or negligible isotope fractionation. The balance between
these two processes and N2 fixation determines the isotope
composition of modern seawater (average ca. +5‰) (Sigman
et al., 2009; Algeo et al., 2014; Stüeken et al., 2016). Assuming
a steady isotope scenario, a high fraction of water column
denitrification would thus increase the δ15N of seawater
nitrate, and vice versa (Sigman et al., 2009; Algeo et al., 2014;
Stüeken et al., 2016). Hence, the decrease of δ15N coupled with the
Shuram excursion on the Yangtze Platform could have resulted
from the decrease of the fraction of water column denitrification.
This requires a more widely oxygenated ocean than today, i.e. a
complete absence of oxygen minimum zones, which is not
supported by any current geochemical and geological evidence.
However, the nitrogen isotope mass balance can potentially also
be affected by sea level. Algeo et al. (2014) compiled δ15N data
from the Cryogenian to present and found a long-term decrease in
δ15N from the Cryogenian to the Cambrian, which they attributed
to a first-order climate-driven sea level change. According to this
model, high eustatic sea level could have resulted in relatively low
δ15N if the dominant locus of denitrification shifted to sediments
(Algeo et al., 2014). However, this model is difficult to reconcile
with the relatively stable positive δ15N values from ca. 750Ma to
570Ma, spanning from the Tonian through the Cryogenian to the
middle Ediacaran (Ader et al., 2014). Particularly, after the
deglaciation of the Marinoan Snowball Earth, which
represented a global sea level rise, δ15N remains high for at
least 60 Myr or even longer until the onset of the Shuram
excursion (Xiang et al., 2018; Chen et al., 2019; Xu et al.,
2020). Further, from the Ediacaran to early Cambrian the
ocean was characterized by predominately anoxic
environments with multiple short-term oxygenation events
(Sahoo et al., 2016; Li et al., 2018). Under such conditions, the
fraction of water column denitrification should always have been
much higher than it is in more oxygenated oceans like today, even
during intervals of high eustatic sea level. Therefore, changes in
proportion of water column denitrification alone cannot readily
explain the decrease in δ15N during the Shuram excursion.

Variation in the isotope fractionation associated with water
column denitrification is another factor that can modulate
seawater δ15N. According to the mass balance model for the
nitrogen cycle (Sigman et al., 2009; Algeo et al., 2014; Stüeken
et al., 2016), the seawater nitrate δ15N is determined by the
isotopic balance between input and output processes, which can
be described in the following formulation:

δ15Natmosphere − εfix � δ15Nnitrate − εden (1)

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 67814910

Xu et al. Nitrogen Cycling during Shuram Excursion

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


where εfix refers to isotopic fractionation of N2 fixation, and εden
represents net isotope fractionation of total denitrification which
can be expressed as:

εden � fwd · εwd + (1 − fwd) · εsd (2)

where the subscripts wd and sd refer to water column denitrification
and sedimentary denitrification, respectively, and fwd represents the
fraction of water column denitrification. In modern oceans, the εwd
can vary from 0‰ for quantitative denitrification to 30‰ (Sigman
et al., 2009 and references therein). To model seawater nitrate δ15N
as a function of εwd, we set εfix to be +1‰ and εsd to be 0‰ (Sigman
et al., 2009 and references therein). If the fraction of water column
denitrification was 25% during the Ediacaran as generally suggested
for today (Sigman et al., 2009), the mean δ15N of pre-Shuram
samples corresponds to εwd of 26–28%, and the decrease of δ15N
during the Shuram excursion would require a decrease of εwd to
19–21% (Figure 8). The εwd could have been smaller if fwd increased
(Figure 8). For example, εwd for the mean δ15N of the Shuram
interval would be 12–13‰, if fwd increased to 40%, and it would
decrease to ca. 6‰when increasing fwd to 80%. A high fraction of fwd
was possible for the Ediacaran when anoxic marine environments
were more extensive than today.Modifying εsd to 3‰ as observed in
some modern sediment (Kessler et al., 2014) would require a lower
εwd to produce the same δ15N. This difference would be large when
fwd was low but small as fwd increased (Figure 8).

As discussed above, the decrease of δ15N associated with the
Shuram excursion can be well explained by the decrease of εwd.We
argue that this change may have been caused by a feedback
between the nitrogen and carbon cycles at that time. Enhanced

continental weathering before the Shuram excursion, as evidenced
by the increase of 87Sr/86Sr (Sawaki et al., 2010; Wang et al., 2014;
Cui et al., 2015; Xiao et al., 2016; Lan et al., 2019), would have
delivered substantial amounts of nutrients to the ocean, promoting
primary productivity (Williams et al., 2019). High primary
productivity would have resulted in an expansion of anoxic
bottom waters on productive continental shelves. These anoxic
waters would have been capped by oxic surface waters, leading to
extensive aerobic respiration or organic matter along the redox
interface. An ensuing consequence of this combined effect would
have been the significant consumption of nitrate through
enhanced denitrification. Stoichiometric relationships indicate
that remineralization of 1 mol of organic carbon through
denitrification would consume 85 mol or even more nitrate
(Altabet, 2006). The shrinkage of the nitrate pool may have
reduced εwd due to reservoir effects, as has been documented
frommodernmicrobial cultures, where εwd decreased when nitrate
levels dropped to a few µM (compared to ∼30 µM in the modern
open ocean) (Kritee et al., 2012). Additionally, the decrease of
nitrate levels would inevitably shift the nitrogen cycle towards N2

fixation and ammonium assimilation, which may also partially
contribute to the lower δ15N during the Shuram excursion, as
evidenced by a near zero value observed in the Fengtan section
(Nishizawa et al., 2019). In the long time scale, an increase in
organic burial in the context of high primary productivity would
have led to rising O2 levels (e.g., Alcott et al., 2019). This inference
is consistent with the increase of I/(Ca + Mg) ratios (Hardisty et al.,
2017; Wei et al., 2019), a large positive δ238U excursion (Zhang F.
et al., 2019; Cao et al., 2020), and a negative excursion of thallium
isotope composition (ε205Tl) (Fan et al., 2020) during the Shuram
interval. The rise of oxygen would have resulted in partial oxidation
of dissolved organic carbon stored in the anoxic deep ocean
(Rothman et al., 2003) or of other forms of reduced carbon (e.g.,
Bjerrum and Canfield, 2011), lowering the δ13C of inorganic carbon
in seawater, as documented in the Shuram excursion. Further, the
recycled N and P from the oxidation of organic matter could have
been upwelled to the photic zone, providing new nutrient input for
organisms and further stimulating primary productivity. Although
we cannot completely rule out the possibility of diagenetic overprint
over the Shuram signal in individual cases, the coupled variations of
δ13Ccarb and δ15N in multiple sections across the Yangtze Platform
suggest that they may partially record changes in primary seawater
signals in response to the complex feedback between carbon and
nitrogen cyclings during this critical period.

CONCLUSION

High resolution δ15N and δ13Corg data are reported from the upper
part of the Ediacaran Doushantuo Formation in two well-preserved
sections in the Yangtze Gorges area, South China. These data,
coupled with previously published δ13Ccarb in the same sections,
are used to elucidate the inherent relationship between carbon and
nitrogen cycling during the Shuram-EN3 excursion─the deepest
negative δ13Ccarb excursion in Earth history. The δ15N data in the
studied sections show concurrent variations with δ13Ccarb, although
themagnitude of change ismuch smaller. Bootstrapping simulations

FIGURE 8 | Mass balance model showing seawater nitrate δ15N as
function of εwd. Colored oblique lines represent the fraction of water column
denitrification (fwd) from 25% (red line) to 80% (blue line). Horizontal dash line
indicates the average δ15N and modern seawater. Shaded zones show
the bootstrap δ15N range (same as in Figure 7H) before and during the
Shuram excursion.
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further demonstrate a clear decrease of δ15N associated with the
Shuram-EN3 excursion. We argue that the decrease in δ15N during
the Shuram-EN3 excursion can be reasonably explained by the
reduction of isotopic fractionation associated with water column
denitrification rather than the partial assimilation of nitrate. The
parallel changes in δ13Ccarb and δ15N may have resulted from
feedbacks between carbon and nitrogen cycles.
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