210 research outputs found

    A systematic mRNA control mechanism for germline stem cell homeostasis and cell fate specification

    Get PDF
    Germline stem cells (GSCs) are the best understood adult stem cell types in the nematode Caenorhabditis elegans, and have provided an important model system for studying stem cells and their cell fate in vivo, in mammals. In this review, we propose a mechanism that controls GSCs and their cell fate through selective activation, repression and mobilization of the specific mRNAs. This mechanism is acutely controlled by known signal transduction pathways (e.g., Notch signaling and Ras-ERK MAPK signaling pathways) and P granule (analogous to mammalian germ granule)-associated mRNA regulators (FBF-1, FBF-2, GLD-1, GLD-2, GLD-3, RNP-8 and IFE-1). Importantly, all regulators are highly conserved in many multi-cellular animals. Therefore, GSCs from a simple animal may provide broad insight into vertebrate stem cells (e.g., hematopoietic stem cells) and their cell fate specification. [BMB Reports 2016; 49(2): 93-98

    Sorbus alnifolia protects dopaminergic neurodegeneration in Caenorhabditis elegans

    Get PDF
    Context: The twigs of Sorbus alnifolia (Sieb. et Zucc.) K. Koch (Rosaceae) have been used to treat neuro- logical disorders as a traditional medicine in Korea. However, there are limited data describing the efficacy of S. alnifolia in Parkinson’s disease (PD). Objective: This study was conducted to identify the protective effects of the methanol extracts of S. alnifolia (MESA) on the dopaminergic (DA) neurodegeneration in Caenorhabditis elegans. Materials and methods: To test the neuroprotective action of MESA, viability assay was performed after 48 h exposure to 1-methyl-4-phenylpyridine (MMPþ) in PC12 cells and C. elegans (400 lM and 2 mM of MMPþ, respectively). Fluorescence intensity was quantified using transgenic mutants such as BZ555 (Pdat-1::GFP) and and UA57 (Pdat-1::GFP and Pdat-1::CAT-2) to determine MESA’s effects on DA neurode- generation in C. elegans. Aggregation of a-synuclein was observed using NL5901 strain (unc-54p::a- synuclein::YFP). MESA’s protective effects on the DA neuronal functions were examined by food-sensing assay. Lifespan assay was conducted to test the effects of MESA on the longevity. Results: MESA restored MPPþ-induced loss of viability in both PC12 cells and C. elegans (85.8% and 54.9%, respectively). In C. elegans, MESA provided protection against chemically and genetically-induced DA neurodegeneration, respectively. Moreover, food-sensing functions were increased 58.4% by MESA in the DA neuron degraded worms. MESA also prolonged the average lifespan by 25.6%. However, MESA failed to alter a-synuclein aggregation. Discussion and conclusions: These results revealed that MESA protects DA neurodegeneration and recov- ers diminished DA neuronal functions, thereby can be a valuable candidate for the treatment of PD

    The Ras-ERK MAPK regulatory network controls dedifferentiation in Caenorhabditis elegans germline

    Get PDF
    Appendix A Supplementary data Supplementary materials. Download Appendix A Supplementary data Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bbamcr.2012.07.006 . Abstract How a committed cell can be reverted to an undifferentiated state is a central question in stem cell biology. This process, called dedifferentiation, is likely to be important for replacing stem cells as they age or get damaged. Tremendous progress has been made in understanding this fundamental process, but its mechanisms are poorly understood. Here we demonstrate that the aberrant activation of Ras-ERK MAPK signaling promotes cellular dedifferentiation in the Caenorhabditis elegans germline. To activate signaling, we removed two negative regulators, the PUF-8 RNA-binding protein and LIP-1 dual specificity phosphatase. The removal of both of these two regulators caused secondary spermatocytes to dedifferentiate and begin mitotic divisions. Interestingly, reduction of Ras-ERK MAPK signaling, either by mutation or chemical inhibition, blocked the initiation of dedifferentiation. By RNAi screening, we identified RSKN-1/P90 RSK as a downstream effector of MPK-1/ERK that is critical for dedifferentiation: rskn-1 RNAi suppressed spermatocyte dedifferentiation and instead induced meiotic divisions. These regulators are broadly conserved, suggesting that similar molecular circuitry may control cellular dedifferentiation in other organisms, including humans

    Catalpol Modulates Lifespan via DAF-16/FOXO and SKN-1/Nrf2 Activation in

    Get PDF
    Catalpol is an effective component of rehmannia root and known to possess various pharmacological properties. The present study was aimed at investigating the potential effects of catalpol on the lifespan and stress tolerance using C. elegans model system. Herein, catalpol showed potent lifespan extension of wild-type nematode under normal culture condition. In addition, survival rate of catalpol-fed nematodes was significantly elevated compared to untreated control under heat and oxidative stress but not under hyperosmolality conditions. We also found that elevated antioxidant enzyme activities and expressions of stress resistance proteins were attributed to catalpol-mediated increased stress tolerance of nematode. We further investigated whether catalpol’s longevity effect is related to aging-related factors including reproduction, food intake, and growth. Interestingly, catalpol exposure could attenuate pharyngeal pumping rate, indicating that catalpol may induce dietary restriction of nematode. Moreover, locomotory ability of aged nematode was significantly improved by catalpol treatment, while lipofuscin levels were attenuated, suggesting that catalpol may affect age-associated changes of nematode. Our mechanistic studies revealed that mek-1, daf-2, age-1, daf-16, and skn-1 are involved in catalpol-mediated longevity. These results indicate that catalpol extends lifespan and increases stress tolerance of C. elegans via DAF-16/FOXO and SKN-1/Nrf activation dependent on insulin/IGF signaling and JNK signaling

    A Case of Multiple Endocrine Neoplasia Type 1 Combined with Papillary Thyroid Carcinoma

    Get PDF
    This is the first report of papillary thyroid carcinoma combined with multiple endocrine neoplasia type 1 (MEN1) in Korea. MEN1 is a hereditary disease comprising neoplastic disorders such as pituitary, parathyroid and pancreatic neuroendocrine tumor, such as gastrinoma. But papillary thyroid cancer was never regarded as its component before in Korea. Herein we present a 39-year-old woman who manifested typical features of MEN1 with a coincidental papillary thyroid carcinoma. Although the family history of MEN1 was definite, her genetic analysis of DNA had revealed no germline mutation in MEN1 gene locus. Unidentified culprit gene unable us further genetic study to find LOH (loss of heterogeneity) in 11q13, the possible explanation of papillary thyroid carcinoma as a new component of MEN1. As we have first experienced a case of MEN1 combined with papillary thyroid carcinoma in Korea, we report it with the review of literature
    corecore