51,602 research outputs found

    Improving Stochastic Estimator Techniques for Disconnected Diagrams

    Get PDF
    Disconnected diagrams are expected to be sensitive to the inclusion of dynamical fermions. We present a feasibility study for the observation of such effects on the nucleonic matrix elements of the axial vector current, using SESAM full QCD vacuum configurations with Wilson fermions on 163×3216^3\times 32 lattices, at β=5.6\beta =5.6. Starting from the standard methods developed by the Kentucky and Tsukuba groups, we investigate the improvement from various refinements thereof.Comment: One author added. Contribution to Lattice 1997, 3 pages LaTex, to appear in Nucl. Phys. B (Proc. Suppl.

    Spin liquid close to a quantum critical point in Na4_4Ir3_3O8_8

    Full text link
    Na4_4Ir3_3O8_8 is a candidate material for a 3-dimensional quantum spin-liquid on the hyperkagome lattice. We present thermodynamic measurements of heat capacity CC and thermal conductivity κ\kappa on high quality polycrystalline samples of Na4_4Ir3_3O8_8 down to T=500T = 500 mK and 7575 mK, respectively. Absence of long-range magnetic order down to T=75T = 75 mK strongly supports claims of a spin-liquid ground state. The constant magnetic susceptibility χ\chi below T≈25T \approx 25 K and the presence of a small but finite linear-TT term in C(T)C(T) suggest the presence of gapless spin excitations. Additionally, the magnetic Gru¨\ddot{\rm{u}}neisen ratio shows a divergence as T→0T \rightarrow 0 K and a scaling behavior which clearly demonstrates that Na4_4Ir3_3O8_8 is situated close to a zero-field QCP.Comment: 5 pages, 4 figures, PRB rapid, in pres

    The structure of parafermion vertex operator algebras

    Get PDF
    It is proved that the parafermion vertex operator algebra associated to the irreducible highest weight module for the affine Kac-Moody algebra A_1^{(1)} of level k coincides with a certain W-algebra. In particular, a set of generators for the parafermion vertex operator algebra is determined.Comment: 12 page

    Spatial structures in a simple model of population dynamics for parasite-host interactions

    Full text link
    Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the populations long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.Comment: 6 pages, 6 figure

    Bulk-fragment and tube-like structures of AuN (N=2-26)

    Full text link
    Using the relativistic all-electron density-functional calculations on the AuN (N=2-26) in the generalized gradient approximation, combined with the guided simulated annealing, we have found that the two- to three-dimensional structural transition for AuN occurs between N=13 and 15, and the AuN (16<= N <=25) prefer also the pyramid-based bulk fragment structures in addition to the Au20. More importantly, the tubelike structures are found to be the most stable for Au24 and Au26, offering another powerful structure competitor with other isomers, e.g., amorphous, bulk fragment, and gold fullerene. The mechanism to cause these unusual AuN may be attributed to the stronger s-d hybridization and the d-d interaction enhanced by the relativistic effects.Comment: 12 pages and 3 figure

    Multipole polarizability of a graded spherical particle

    Full text link
    We have studied the multipole polarizability of a graded spherical particle in a nonuniform electric field, in which the conductivity can vary radially inside the particle. The main objective of this work is to access the effects of multipole interactions at small interparticle separations, which can be important in non-dilute suspensions of functionally graded materials. The nonuniform electric field arises either from that applied on the particle or from the local field of all other particles. We developed a differential effective multipole moment approximation (DEMMA) to compute the multipole moment of a graded spherical particle in a nonuniform external field. Moreover, we compare the DEMMA results with the exact results of the power-law graded profile and the agreement is excellent. The extension to anisotropic DEMMA will be studied in an Appendix.Comment: LaTeX format, 2 eps figures, submitted for publication

    Oriented gap opening in the magnetically ordered state of Iron-pnicitides: an impact of intrinsic unit cell doubling on the FeFe square lattice by AsAs atoms

    Full text link
    We show that the complicated band reconstruction near Fermi surfaces in the magnetically ordered state of iron-pnictides observed by angle-resolved photoemission spectroscopies (ARPES) can be understood in a meanfield level if the \emph{intrinsic unit cell doubling} due to As atoms is properly considered as shown in the recently constructed S4_{4} microscopic effective model. The (0,Ï€\pi) or (Ï€\pi,0) col-linear antiferromagnetic (C-AFM) order does not open gaps between two points at Fermi surfaces linked by the ordered wave vector but forces a band reconstruction involving four points in unfolded Brillouin zone (BZ) and gives rise to small pockets or hot spots. The S4_4 symmetry naturally chooses a staggered orbital order over a ferro-orbital order to coexist with the C-AFM order. These results strongly suggest that the kinematics based on the S4_{4} symmetry captures the essential low energy physics of iron-based superconductors.Comment: 5 figures, 5 page

    The Third Law of Quantum Thermodynamics in the Presence of Anomalous Couplings

    Full text link
    The quantum thermodynamic functions of a harmonic oscillator coupled to a heat bath through velocity-dependent coupling are obtained analytically. It is shown that both the free energy and the entropy decay fast with the temperature in relation to that of the usual coupling from. This implies that the velocity-dependent coupling helps to ensure the third law of thermodynamics.Comment: 4 pages, 3 figures, 22 conference
    • …
    corecore