446 research outputs found

    Microhoneycomb monoliths prepared by the unidirectional freeze-drying of cellulose nanofiber based sols: Method and extensions

    Full text link
    © 2018 Journal of Visualized Experiments. Monolithic honeycomb structures have been attractive to multidisciplinary fields due to their high strength-to-weight ratio. Particularly, microhoneycomb monoliths (MHMs) with micrometer-scale channels are expected as efficient platforms for reactions and separations because of their large surface areas. Up to now, MHMs have been prepared by a unidirectional freeze-drying (UDF) method only from very limited precursors. Herein, we report a protocol from which a series of MHMs consisting of different components can be obtained. Recently, we found that cellulose nanofibers function as a distinct structure-directing agent towards the formation of MHMs through the UDF process. By mixing the cellulose nanofibers with water soluble substances which do not yield MHMs, a variety of composite MHMs can be prepared. This significantly enriches the chemical constitution of MHMs towards versatile applications

    A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells

    Get PDF
    The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent.published_or_final_versio

    A Nacre-Like Carbon Nanotube Sheet for High Performance Li-Polysulfide Batteries with High Sulfur Loading

    Full text link
    © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Lithium-sulfur (Li-S) batteries are considered as one of the most promising energy storage systems for next-generation electric vehicles because of their high-energy density. However, the poor cyclic stability, especially at a high sulfur loading, is the major obstacles retarding their practical use. Inspired by the nacre structure of an abalone, a similar configuration consisting of layered carbon nanotube (CNT) matrix and compactly embedded sulfur is designed as the cathode for Li-S batteries, which are realized by a well-designed unidirectional freeze-drying approach. The compact and lamellar configuration with closely contacted neighboring CNT layers and the strong interaction between the highly conductive network and polysulfides have realized a high sulfur loading with significantly restrained polysulfide shuttling, resulting in a superior cyclic stability and an excellent rate performance for the produced Li-S batteries. Typically, with a sulfur loading of 5 mg cm−2, the assembled batteries demonstrate discharge capacities of 1236 mAh g−1 at 0.1 C, 498 mAh g−1 at 2 C and moreover, when the sulfur loading is further increased to 10 mg cm−2 coupling with a carbon-coated separator, a superhigh areal capacity of 11.0 mAh cm−2 is achieved

    First Measurements of eta_c Decaying into K^+K^-2(pi^+pi^-) and 3(pi^+pi^-)

    Full text link
    The decays of eta_c to K^+K^-2(pi^+pi^-) and 3(pi^+pi^-) are observed for the first time using a sample of 5.8X10^7 J/\psi events collected by the BESII detector. The product branching fractions are determined to be B(J/\psi-->gamma eta_c)*B(eta_c-->K^+K^-pi^+pi^-pi^+pi^-)=(1.21+-0.32+- 0.23)X10^{-4},B(J/ψ−−>gammaetac)∗B(etac−−>K∗0Kˉ∗0pi+pi−)=(1.29+−0.43+−0.32)X10−4,B(J/\psi-->gamma eta_c)*B(eta_c-->K^{*0}\bar{K}^{*0}pi^+pi^-)= (1.29+-0.43+-0.32)X10^{-4}, and (J/\psi-->gamma eta_c)* B(eta_c-->pi^+pi^-pi^+pi^-pi^+pi^-)= (2.59+-0.32+-0.48)X10^{-4}. The upper limit for eta_c-->phi pi^+pi^-pi^+pi^- is also obtained as B(J/\psi-->gamma eta_c)*B(eta_c--> phi pi^+pi^-pi^+pi^-)< 6.03 X10^{-5} at the 90% confidence level.Comment: 11 pages, 4 figure

    Resonances in J/ψ→ϕπ+π−J/\psi \to \phi \pi ^+\pi ^- and ϕK+K−\phi K^+K^-

    Full text link
    A partial wave analysis is presented of J/ψ→ϕπ+π−J/\psi \to \phi \pi ^+\pi ^- and ϕK+K−\phi K^+K^- from a sample of 58M J/ψJ/\psi events in the BES II detector. The f0(980)f_0(980) is observed clearly in both sets of data, and parameters of the Flatt\' e formula are determined accurately: M=965±8M = 965 \pm 8 (stat) ±6\pm 6 (syst) MeV/c2^2, g1=165±10±15g_1 = 165 \pm 10 \pm 15 MeV/c2^2, g2/g1=4.21±0.25±0.21g_2/g_1 = 4.21 \pm 0.25 \pm 0.21. The ϕππ\phi \pi \pi data also exhibit a strong ππ\pi \pi peak centred at M=1335M = 1335 MeV/c2^2. It may be fitted with f2(1270)f_2(1270) and a dominant 0+0^+ signal made from f0(1370)f_0(1370) interfering with a smaller f0(1500)f_0(1500) component. There is evidence that the f0(1370)f_0(1370) signal is resonant, from interference with f2(1270)f_2(1270). There is also a state in ππ\pi \pi with M=1790−30+40M = 1790 ^{+40}_{-30} MeV/c2^2 and Γ=270−30+60\Gamma = 270 ^{+60}_{-30} MeV/c2^2; spin 0 is preferred over spin 2. This state, f0(1790)f_0(1790), is distinct from f0(1710)f_0(1710). The ϕKKˉ\phi K\bar K data contain a strong peak due to f2â€Č(1525)f_2'(1525). A shoulder on its upper side may be fitted by interference between f0(1500)f_0(1500) and f0(1710)f_0(1710).Comment: 17 pages, 6 figures, 1 table. Submitted to Phys. Lett.

    Measurement of the Branching Fraction of J/psi --> pi+ pi- pi0

    Full text link
    Using 58 million J/psi and 14 million psi' decays obtained by the BESII experiment, the branching fraction of J/psi --> pi+ pi- pi0 is determined. The result is (2.10+/-0.12)X10^{-2}, which is significantly higher than previous measurements.Comment: 9 pages, 8 figures, RevTex

    Search for K_S K_L in psi'' decays

    Full text link
    K_S K_L from psi'' decays is searched for using the psi'' data collected by BESII at BEPC, the upper limit of the branching fraction is determined to be B(psi''--> K_S K_L) < 2.1\times 10^{-4} at 90% C. L. The measurement is compared with the prediction of the S- and D-wave mixing model of the charmonia, based on the measurements of the branching fractions of J/psi-->K_S K_L and psi'-->K_S K_L.Comment: 5 pages, 1 figur

    First observation of psi(2S)-->K_S K_L

    Full text link
    The decay psi(2S)-->K_S K_L is observed for the first time using psi(2S) data collected with the Beijing Spectrometer (BESII) at the Beijing Electron Positron Collider (BEPC); the branching ratio is determined to be B(psi(2S)-->K_S K_L) = (5.24\pm 0.47 \pm 0.48)\times 10^{-5}. Compared with J/psi-->K_S K_L, the psi(2S) branching ratio is enhanced relative to the prediction of the perturbative QCD ``12%'' rule. The result, together with the branching ratios of psi(2S) decays to other pseudoscalar meson pairs (\pi^+\pi^- and K^+K^-), is used to investigate the relative phase between the three-gluon and the one-photon annihilation amplitudes of psi(2S) decays.Comment: 5 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let

    Study of psi(2S) decays to X J/psi

    Full text link
    Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million psi(2S) events collected with the BESI detector, the branching fractions of psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) -> pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026 \pm 0.055.Comment: 13 pages, 8 figure

    Microbial ligand costimulation drives neutrophilic steroid-refractory asthma

    Get PDF
    Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
    • 

    corecore