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Abstract

The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been

suggested as a potential molecular target for anti-melanoma therapeutics. However, few

JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone

analogues were evaluated for their activity against human malignant melanoma cells. The

most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in

human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cel-

lular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates.

Moreover, compound 1 showed higher antiproliferative activity against human melanoma

A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated

caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-

apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma

cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be

investigated for use as an anti-melanoma agent.

Introduction

The incidence of melanoma has increased over the past three decades [1,2], and its mortality

rate is higher than another cancers [3,4]. However, less special drug for metastatic melanoma is

approved for the first-line therapy [5–9].The Janus kinase 2 (JAK2)/signal transducer and acti-

vator of transcription 3 (STAT3) pathway is overactivated in many human cancers, including

melanoma [10,11]. Therefore, inhibiting JAK2 is a potential anticancer strategy. AG490, the

first JAK2 inhibitor, selectively blocks cell growth in vitro and in vivo by inhibition of JAK2

activity and inducing apoptosis [12]. Another potent JAK2 inhibitor, NVP-BBT594, suppressed

activation loop phosphorylation of JAK2 [13]. To the best of our knowledge, just a small
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number of JAK2 inhibitors were being tested for cancer therapy on the status phase I or phase

II, and only one JAK2 inhibitor, Ruxolitinib (INC424), was approved by Food and Drug

Administration (FDA) [14]. Within the realm of natural products or natural product analogues,

cucurbitacin and BBMD3 have been reported to inhibit the JAK2/STAT3 pathway [10,15].

Traditional Chinese herbal medicines provide a rich resource of bioactive structure for

pharmaceutical drug development [16–36]. Flavonoids are natural polyphenolic substances

that are widely found in Traditional Chinese medicine [37] and have been investigated as

potential anti-cancer agents [38]. Previously, our group reported that the activities of amento-

flavone and its analogues on JAK2 kinase against human erytholeukemia cells (HEL). The

biflavonoid amentoflavone was identified as an inhibitor of JAK2 activity using a structure-

based virtual screening approach, which showed promising anticancer activity against HEL

cells [34]. However, the efficacy of amentoflavone analogues against malignant melanoma, a

widespread and deadly cancer, has not yet been investigated. Therefore, in this study, eight

amentoflavone analogues were evaluated for their anticancer activities against human mela-

noma cells. Our findings demonstrate that the amentoflavone analogue compound 1 is a

potent inhibitor of the JAK2/STAT3 signaling pathway against melanoma cells, suggesting

that this natural product scaffold could deserve further attention for the development of anti-

melanoma therapeutics.

Materials and methods

Reagents

All antibodies were purchased from Cell signaling Technology. All compounds were dissolved

in dimethyl sulfoxide (DMSO) at a stock concentration of 10 mM. Human malignant mela-

noma (A375) cells, human malignant melanoma (A2058) cells, human prostate cancer (PC3)

cells, human prostate cancer (DU145) cells, and human liver cancer (HepG2) cells were

obtained from American Type Culture Collection. The hepatocyte cell line LO2 was obtained

from Chinese Academy of Science, Cell Biology of Shanghai Institute, Shanghai, China.

Cell culture

A375, A2058, PC3, DU145, HepG2 and LO2 cells were cultured at cell density of 4–5 × 105

cells/mL in DMEM (Dulbecco’s Modified Eagle Medium) with high glucose and L-glutamine

and supplemented with 10% fetal bovine serum (FBS) and 1% penicillin (100 units/mL)/strep-

tomycin (100 μg/mL) at 37˚C and 5% CO2.

Cell viability assay

A MTT assay was used to evaluate the antiproliferative effect of the natural products. Cells

were seeded at a density of 5,000–6,000 cells per well in 96-well plates. When the density of the

cells reached 50% confluence, the cells were treated with compounds at final concentrations

ranging from 0.01 to 10 μM for 48 h. MTT was added to each well at a final concentration of 1

mg/mL for a further 4 h. After removing the medium from the cells, 100 μL DMSO was added

to each well. The viability of the cells was measured by recording the absorbance of each well

at 490 nm using a SpectraMax M5 microplate reader after shaking the plate for 10 min at

room temperature in the dark.

Western blotting analysis

A375 cells were treated with vehicle, compound 1 or NVP-BBT594 for 24 h, and then har-

vested and washed twice with ice-cold PBS. Protein samples were extracted with radio-
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immunoprecipitation assay buffer (RIPA) lysis buffer containing 1% cocktail and 1% PMSF.

30 μg of total proteins were resolved on an SDS/PAGE gel and transferred to a polvinylidene

fluoride (PVDF) membrane. Blots were blocked in 5% none-fat dry milk with TBS containing

0.1% Tween-20 for 1 h and probed with primary antibodies to JAK2, p-JAK2, STAT3, p-STAT3,

caspase-3, PARP, Bcl-2, HIF1α, ubiquitin or β-actin and GAPDH with gentle agitation overnight

at 4˚C. Then, membranes were washed five time with TBST. After incubation with secondary

antibody for 1 h. Signals of proteins bands were detected using enhanced chemiluminescent

Plus reagents (GE Healthcare) and analyzed by Image Lab.

Cellular thermal shift assay

Cellular thermal shift assay was performed to evaluate the target engagement of compound 1

in A375 cells. Briefly, after collecting A375 cell lysates, the cells lysates was separated in the

same aliquots. Each aliquot was treated with 1 (1 μM) or DMSO. After incubation at room

temperature for 30 min, the complex-treated lysates were divided into 50 μL in each of PCR

tubes and heated individually at different temperatures (Veriti thermal cycler, Applied Biosys-

tems/Life Technologies). The heated lysates were centrifuged and the supernatants were ana-

lyzed by SDS-PAGE followed by western-blot assay by probing with anti-JAK2 antibody.

Apoptosis assay

To evaluate apoptosis induction, a FITC-Annexin apoptosis detection kit (BD Biosciences, San

Jose, CA, USA) was utilized. The experiment was performed according to the manufacturer’s

instructions. Briefly, A375 cells were seeded at density of 2.5 × 105 in a 6-well plate, and were

treated with compound 1 at different concentrations (0.03 to 3 μM) for 24 h. Cells were har-

vested and washed twice with ice-cold PBS, and then resuspended in 1 × binding buffer fol-

lowed by incubation with Annexin V/PI solution for 15 min at room temperature. The

samples were immediately analyzed by flow cytometry using a C6 Flow Cytometer™ system

(BD Biosciences). At least 2 × 105 cells were analyzed for each sample.

Statistical analysis

Student’s t-test was performed using SPSS 12.0 software. The results are presented as the mean

±SD. ��p<0.01 was considered to be significantly different.

Results

Identification of 1 as a potent inhibitor of human melanoma cell viability

Eight amentoflavone analogues (Fig 1) were synthesized previously [34]. For primary screening,

the MTT assay was performed to assess the ability of the analogues to inhibit the proliferation of

A375 cells. Amentoflavone was used as the positive control. The results showed that compound

1 showed potent anticancer activity against the A375 cell line, with an IC50 value of 0.37 μM,

compared to other 0.50 μM for amentoflavone (Fig 2A). In addition, compound 1 showed rela-

tively non-toxic towards DU145, PC3, HepG2, A2058 and LO2 cells (IC50� 10 μM) (Fig 2B–

2F). These data suggest that compound 1 could be regarded as a potential chemotherapeutic

agent against human melanoma.

Effect of compound 1 on the JAK2/STAT3 pathway

In order to determine whether compound 1 inhibits the JAK2/STAT3 pathway in cellulo,

Western blotting assays were performed. A375 cells were treated with compound 1 (0.03 to

3 μM) for 24 h before measurement. The results showed that compound 1 suppressed the
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phosphorylation of JAK2 and STAT3, but had no discernible effect on total JAK2 and STAT3

levels (Fig 3).

Cellular thermal shift assay

To evaluate whether JAK2 is engaged by 1 in cell lysates, a cellular thermal shift assay (CETSA)

was applied [39]. The JAK2 content in the soluble fraction was determined by Western blot-

ting. The results showed that 1 could stabilize JAK2 in treated cell lysates, as indicated by an

obvious shift of the melting temperature of JAK2 content in the soluble fraction (Fig 4A and

4B). This result indicates that the thermal stabilization of JAK2 is engaged by 1.

Compound 1 induces cell apoptosis

Activation of STAT3 can suppress apoptosis through inhibition of activated caspase-3 [40].

The cleavage of PARP and activation of caspase-3 are widely regarded as markers of apoptosis

[40]. To confirm whether compound 1 induces apoptosis, A375 cells were exposed to 0.03 to

3 μM of compound 1 for 24 h, and the level of apoptosis was assessed by flow cytometry using

annexin V and PI staining. The results showed that compound 1 could induce apoptosis in

approximately 80% of the cells (Fig 5A). Moreover, compound 1 induced the cleavage of

PARP and decreased caspase-3 levels (Fig 5B). Stat3 is known to regulate the expression of

various anti-apoptotic and pro-apoptotic proteins [40]. Our results showed that compound

1 suppressed Bcl-2, an anti-apoptotic protein that is upregulated by STAT3 (Fig 6A and 6B).

Taken together, these results indicate that 1 could induce apoptosis in A375 cells, presumably

as a result of its effects on PARP, caspase-3 and Bcl-2 that are under the control of the JAK2/

STAT3 signaling pathway. Additionally, compound 1 had no effect on HIF1α and ubiquitin

levels (Fig 7).

Discussion

STAT3 signaling plays a crucial role in tumorigenesis. In particular, JAK2 is important for

cytokine receptor signal transduction [41,42]. After activation, JAK2 kinase can phosphorylate

STAT3, which then translocates to the nucleus to enhance the levels of downstream genes,

including anti-apoptotic genes that are implicated in human cancer development [43–45].

Blocking upstream activators of STAT3 or suppressing phosphorylation of STAT3 itself has

Fig 1. Chemical structures of amentoflavone (AF) and analogues 1–8.

https://doi.org/10.1371/journal.pone.0177123.g001
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Fig 2. Effects of compounds on cell viability as determined by an MTT assay. A375 cells were

treated with 0.01 to 4 μM of compounds or amentoflavone for 48 h. LO2 cells were treated with the same

concentration of compound 1 for 48 h. PC3, DU145, HepG2 and A2058 cells were treated with 0.01 to

10 μM of compound 1 for 48 h. Error bars represent the standard deviations of results obtained from three

independent experiments.

https://doi.org/10.1371/journal.pone.0177123.g002
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been considered to be a potential anticancer strategy [46–49]. A number of natural products

have been reported to inhibit STAT3 activity and induce apoptosis in different tumor cell lines

[10,50,51]. However, to our knowedge, few natural products act via JAK2 inhibition or have

been investigated for the potential treatment of malignant melanoma [10,52]. WP1066, a

small-molecule, directly process of tumorgenesis and metastasis by inhibiting the phosphory-

lation of JAK2/STAT3 pathway and the subsequent downstream protein, such as survivin and

c-Myc, which are associated with tumor formation [53]. BBMD3, another JAK2 inhibitor,

which inhibited autophosphorylation of JAK2 and blocked activation of downstream STAT3

signaling in melanoma cells [10]. In our previous research, we identified amentoflavone and

its analogues as inhibitors of JAK2 activity with antiproliferative activity against the leukemic

HEL cell line [34]. Due to the prevalance and high mortality rate of metatsatic melanoma, we

were interested to investigate the efficacy of amentoflavone and its analogues against this type

of cancer. In this study, we found that the amentoflavone analogue 1 showed more potent anti-

proliferative activity (0.36 μM) against melanoma cells compared to other cancer cell lines

such as PC3, DU145, A2058 and HepG2 cells (Fig 2A–2E). Moreover, compound 1 had no dis-

cernible toxicity on normal LO2 cells (Fig 2F). This suggested that compound 1 could poten-

tially be developed as a selective antitumor agent against malignant melanoma.

The mechanism of action of compound 1 was evaluated using multiple cellular assays.

Compound 1 reduced the phosphorylation of JAK2 and STAT3 in A375 melanoma cells, but

had no discernible effect on total JAK2 and STAT3 levels (Fig 3). The cellular thermal shift

assay (CETSA) has been applied as the validation and optimization of drug target engagement

[39]. An obvious shift of the melting temperature of JAK2 protein was detected (Fig 4), indi-

cating that 1 could engage JAK2 even in the presence of cellular debris.

In addition, the phosphorylation of JAK2 and STAT3 can enhance the levels of the anti-

apoptotic proteins Bcl-xl, Bcl-2, MCL-1 and survivin [54–56]. Therefore, we investigated

Fig 3. Compound 1 reduces phosphorylation of JAK2, STAT3 in A375 cells. A375 cells were treated with

the indicated concentrations of compound 1 (0.03 to 3 μM) or positive control compound NVP-BBT594 (1 μM)

for 24 h. Protein lysates were analyzed by Western blotting with the indicated antibodies. Error bars represent

the standard deviation of triplicate results.

https://doi.org/10.1371/journal.pone.0177123.g003
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whether compound 1 could induce apoptosis via acting through the JAK2/STAT3 pathway. Our

results showed that compound 1 could induce apoptosis in approximately 80% of A375 cells

after 24 h. Compound 1 could also induce cleavage of PARP and decrease caspase-3 levels,

which could account for the pro-apoptotic activity of the compound (Fig 5). Subsequently, we

studied whether compound 1 down-regulates the antiapoptotic protein Bcl-2 level which is regu-

lated by STAT3 [54]. Our results showed that compound 1 inhibited the level of Bcl-2 in mela-

noma cells (Fig 6). This is consistent with other reports showing that inhibition of constitutively

activated STAT3 correlates with altered Bcl-2/Bax levels [57]. HIF1α and ubiquitin are associated

with apoptosis [58–60]. In order to rule out compound 1 acting via HIF1α or ubiquitin-associ-

ated pathways to induce apoptosis, the levels of HIF1α and ubiquitin were measured in treated

cells. The results showed that 1 has no discernible effect on HIF1α and ubiquitin levels, suggest-

ing that it did not induce apoptosis via those HIF1α and protein degradation pathways (Fig 7).

Taken together, these results clearly suggest that the apoptotic effect of compound 1 in mel-

anoma cells is due to inhibition of JAK2/STAT3 signaling leading to the activation of pro-apo-

potic regulators and the inhibition of anti-apoptotic regulators, rather than through a general

Fig 4. Compound 1 stabilizes JAK2 in A375 cells. (A) Stabilization of JAK2 by 1. (B) The band intensity of JAK2 with different temperatures. The data

were normalized to the JAK2 level of control group at 55˚C and are expressed as the means ± SD of three individual experiments. The data were analyzed

using Image Lab. Error bars represent the standard deviation of triplicate results. Significant differences versus control at the same temperature are indicated

by **p < 0.01.

https://doi.org/10.1371/journal.pone.0177123.g004
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toxicity mechanism. To the best of our knowledge, this study is the first to demonstrate use of

an amentoflavone analogue as a JAK2 inhibitor with pro-apoptotic and anti-proliferative

effects against melanoma cells.

Fig 5. Compound 1 induces apoptosis in A375 cells. A375 cells were treated with the indicated

concentrations of compound 1 (0.03 to 3 μM) or positive control compound NVP-BBT594 (1 μM) for 24 h. (A)

A375 cells were stained with PI and Annexin V, and were analyzed by flow cytometry. (B) Protein lysates

were analyzed by Western blotting with the indicated antibodies.

https://doi.org/10.1371/journal.pone.0177123.g005

Fig 6. Effect of compound 1 on Bcl-2 level in A375 cells. (A) A375 cells were treated with the indicated

concentrations of compound 1 (0.1 to 3 μM) or positive control compound NVP-BBT594 (1 μM) for 24 h.

Protein lysates were analyzed by Western blotting with the indicated antibodies. (B) The data were analyzed

using Image Lab. Error bars represent the standard deviation of triplicate results.

https://doi.org/10.1371/journal.pone.0177123.g006
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