6 research outputs found

    Cucumber SUPERMAN Has Conserved Function in Stamen and Fruit Development and a Distinct Role in Floral Patterning

    Get PDF
    This is the published version. Copyright 2014 Public Library of Science.The Arabidopsis SUPERMAN (SUP) gene encodes a C2H2 type zinc finger protein that is required for maintaining the boundaries between stamens and carpels, and for regulating development of ovule outer integument. Orthologs of SUP have been characterized in bisexual flowers as well as dioecious species, but it remains elusive in monoecious plants with unisexual flowers on the same individual. Here we isolate the SUP ortholog in Cucumis sativus L (CsSUP), a monoecious vegetable. CsSUP is predominantly expressed in female specific organs: the female flower buds and ovules. Ectopic expression of CsSUP in Arabidopsis can partially complement the fruit development in sup-5 mutant, and its over-expression in wide-type leads to reduced silique length, suppressed stamen development and distorted petal patterning. Our data suggest that CsSUP plays conserved as well as distinct roles during flower and fruit development, and it may function in the boundaries and ovules to balance petal patterning, stamen and ovule development in Arabidopsis

    Constructing Adaptive Multi-Scale Feature via Transformer-Aware Patch for Occluded Person Re-Identification

    No full text
    Person re-identification (Re-ID) aims to retrieve a specific pedestrian across a multi-disjoint camera in a surveillance system. Most of the research is based on a strong assumption that images should contain a full human torso. However, it cannot be guaranteed that all the people have a clear foreground because they are out of constraint. In the real world, a variety of occluded situations frequently appear in video monitoring, which impedes the recognition process. To settle the occluded person Re-ID issue, a new Dual-Transformer symmetric architecture is proposed in this work, which can reduce the occluded impact and build a multi-scale feature. There are two contributions to our proposed model. (i) A Transformer-Aware Patch Searching (TAPS) module is devised to learn visible human region distribution using a multiheaded self-attention mechanism and construct a branch of distributed information attention scale. (ii) An Adaptive Visible-Part Cropping (AVPC) Strategy, with two steps of cropping and weakly-supervised learning, is used to generate a fine-scale visible image for another branch. Only ID labels are utilized to restrain TAPS and AVPC without any extra visible-part annotation. Extensive experiments are conducted on two occluded person Re-ID benchmarks, confirming that our approach performs a SOTA or comparable effect

    Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

    No full text
    Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset
    corecore