494 research outputs found

    Effect of Progressive Integration of On-Board Systems Design Discipline in an MDA Framework for Aircraft Design with Different Level of Systems Electrification

    Get PDF
    The on-board design discipline is sometimes ignored during the first aircraft design iterations. It might be understandable when a single on-board system architecture is considered, especially when a conventional architecture is selected. However, seeing the trend towards systems electrification, multiple architectures can be defined and each one should be evaluated during the first tradeoff studies. In this way, the systems design discipline should be integrated from the first design iterations. This paper deals with a progressive integration of the discipline to examine the partial or total effect of the systems design inside an MDA workflow. The study is carried out from a systems design perspective, analyzing the effect of electrification on aircraft design, with different MDA workflow arrangements. Starting from a non-iterative systems design, other disciplines such as aircraft performance, engine design, and aircraft synthesis are gradually added, increasing the sensibility of the aircraft design to the different systems architectures. The results show an error of 40% in on-board systems assessment when the discipline is not fully integrated. Finally, using the work-flow which allows for greater integration, interesting differences can be noted when comparing systems with different levels of electrification. A possible mass saving of 2.6% of aircraft MTOM can be reached by properly selecting the systems technologies used

    Assessing the Integration of Electrified On-Board Systems in an MDAO framework for a small transport aircraft

    Get PDF
    The integration of on-board systems design within the aircraft design process is often considered only in the late part of the initial design. This is acceptable for civil aircraft using standard technology systems. However, facing with MEA and AEA concepts and different possible architectures, the systems design and the assessment of their effects on the overall aircraft should be moved up in the usual design process. This paper deals with evaluation of the effect of different on-board systems architecture, with a different electrification level, on the overall aircraft design. These effects have been evaluated using three different MDA workflows developed within the AGILE4.0 European research project. The workflows are defined with an increasing number of disciplines to show how the effect of a proper selection of a systems architecture is differently caught by each one. In this way it is possible to define which disciplines should be included for the systems architecture assessment. The results show a save of 1% of MTOM for the AEA applied to a small turboprop aircraft when only the OBS mass is assessed. Increasing workflow complexity, adding performance and engine design the save increase to 1.2%. Finally, the save increases to 1.3% when the effect on engine SFC is also considered

    Poloxamer 338 affects cell adhesion and biofilm formation in escherichia coli: Potential applications in the management of catheter-associated urinary tract infections

    Get PDF
    Poloxamers are nontoxic, amphiphilic copolymers used in different formulations. Due to its surfactant properties, Poloxamer 338 (P388) is herein proposed as a strategy to avoid biofilm formation often causing recalcitrant catheter-associated urinary tract infections (CAUTI). The aim is to evaluate the ability of P388 coatings to affect the adhesion of Ec5FSL and Ec9FSL Escherichia coli strains on silicone urinary catheters. Attenuated total reflection infrared spectroscopy, atomic force microscopy, and static water contact angle measurement were employed to characterize the P388-coated silicone catheter in terms of amount of P388 layered, coating thickness, homogeneity, and hydrophilicity. In static conditions, the antifouling power of P388 was defined by comparing the E. coli cells adherent on a hydrophilic P388-adsorbed catheter segment with those on an uncoated one. A P388-coated catheter, having a homogeneous coverage of 35 nm in thickness, reduced of 0.83 log10 and 0.51 log10 the biofilm of Ec5FSL and Ec9FSL, respectively. In dynamic conditions, the percentage of cell adhesion on P388-adsorbed silicone channels was investigated by a microfluidic system, simulating the in vivo conditions of catheterized patients. As a result, both E. coli isolates were undetected. The strong and stable antifouling property against E. coli biofilm lead us to consider P388 as a promising anti-biofilm agent for CAUTIs control

    Biotechnological modification and functionalisation of PET surfaces

    Get PDF
    Synthetic fibres form an important part of the textile industry, the production of poly(ethylene terephthalate) (PET) alone surpassing that of cotton. A disadvantage of synthetic fibres is their low hydrophilicity. Polyester fibres are particularly hydrophobic. This affects the processability and functionalisation of the fibres. A novel and promising alternative is the use of enzymes in surface modification of synthetic fibres. Synthetic materials have generally been considered resistant to biological degradation; recent developments at different research groups demonstrate that enzymes are very well capable of hydrolysing synthetic materials

    Separation delay on thick airfoil using multiple synthetic jets

    Get PDF
    High momentum 2D synthetic jet actuators are tested experimentally focusing the investigation on the separation delay over the airfoil NACA 0024 at high angles of attack. Four slots are present on the suction side of the airfoil. The number of slots in the downstream direction, the position and the width of the active slots and the forcing frequency were varied to investigate on their effects produced. Pressure measurements and wake analysis were performed at Reynolds number equal to 106. A weak influence was observed at low and medium incidences on the lift and drag curves. Considerable increments of the lift coefficient also associated with drag reductions were obtained at high angles of attack according to the values of the forcing frequency and the slots configuration. The influence of the slot width does not highlight great differences on the lift and drag curves. The upstream location of the slots is more effective to delay separation compared with further downstream positioning. Two consecutive active slots were effective as a single one at the same frequency while the estimated comparison at constant momentum could allow better performances. The tests were carried out operating with forcing frequencies near the resonance conditions of the system synthetic jet- cavity-pneumatic line

    A model-based rams estimation methodology for innovative aircraft on-board systems supporting mdo applications

    Get PDF
    The reduction of aircraft operating costs is one of the most important objectives addressed by aeronautical manufactures and research centers in the last decades. In order to reach this objective, one of the current ways is to develop innovative on-board system architectures, which can bring to lower fuel and maintenance costs. The development and optimization of these new aircraft on-board systems can be addressed through a Multidisciplinary Design Optimization (MDO) approach, which involves different disciplines. One relevant discipline in this MDO problem is Reliability, Availability, Maintainability and Safety (RAMS), which allows the assessment of the reliability and safety of aircraft systems. Indeed the development of innovative systems cannot comply with only performance requirements, but also with reliability and safety constraints. Therefore, the RAMS discipline plays an important role in the development of innovative on-board systems. In the last years, different RAMS models and methods have been defined, considering both conventional and innovative architectures. However, most of them rely on a document-based approach, which makes difficult and time consuming the use of information gained through their analysis to improve system architectures. On the contrary, a model-based approach would make easier and more accessible the study of systems reliability and safety, as explained in several studies. Model Based Systems Engineering (MBSE) is an emerging approach that is mainly used for the design of complex systems. However, only a few studies propose this approach for the evaluation of system safety and reliability. The aim of this paper is therefore to propose a MBSE approach for model-based RAMS evaluations. The paper demonstrates that RAMS models can be developed to quickly and more effectively assess the reliability and safety of conventional and innovative on-board system architectures. In addition, further activities for the integration of the model-based RAMS methodology within MDO processes are described in the paper

    Protein disulphide isomerase-induced refolding of sonochemically prepared Ribonuclease A microspheres

    Get PDF
    The present communication describes for the first time the development of Ribonuclease A (RNase A) microspheres using the sonochemical method followed by an enzymatic treatment with protein disulphide isomerase (PDI). Ultrasound application induced changes on the protein physicochemical and biological properties: the enzymatic activity of RNase A was decreased in 35% and the free thiol groups content was significantly increased, probably due to the breakage of protein disulphide bonds and assembly of RNase A monomers. The deconvolution of amide I band, from Fourier Transform Infrared Spectroscopy, showed that the secondary structure of RNase A was slightly changed after microspherization. The PDI application on microspheres promoted the recovery of RNase A biological activity and induced the release of active protein into solution in its native state. These results were promoted by different states of PDI active site: oxidized and reduced, respectively. The PDI aptitude to catalyze the refolding of a protein substrate in the form of spheres is here reported.Margarida Fernandes thanks FCT "Fundacao para a Ciencia e Tecnologia" for providing the grant for PhD studies (SFRH/BD/38363/2007). Helena Ferreira thanks POPH/FSE for co-financing and FCT for fellowship SFRH/BPD/38939/2007

    VanA type enterococci from humans, animals and food: species distribution, population structure, Tn1546-typing and location, and virulence determinants

    Get PDF
    VanA-type human (n = 69), animal (n = 49), and food (n =36) glycopeptide-resistant enterococci (GRE) from different geographic areas were investigated to study their possible reservoirs and transmission routes. Pulsed-field gel electrophoresis (PFGE) revealed two small genetically related clusters, M39 (n = 4) and M49 (n = 13), representing Enterococcus faecium isolates from animal and human feces and from clinical and fecal human samples. Multilocus sequence typing showed that both belonged to the epidemic lineage of CC17. purK allele analysis of 28 selected isolates revealed that type 1 was prevalent in human strains (8/11) and types 6 and 3 (14/15) were prevalent in poultry (animals and meat). One hundred and five of the 154 VanA GRE isolates, encompassing different species, origins, and PFGE types, were examined for Tn1546 type and location (plasmid or chromosome) and the incidence of virulence determinants. Hybridization of S1- and I-CeuI-digested total DNA revealed a plasmid location in 98% of the isolates. Human intestinal and animal E. faecium isolates bore large (>150 kb) vanA plasmids. Results of PCR-restriction fragment length polymorphism and sequencing showed the presence of prototype Tn1546 in 80% of strains and the G-to-T mutation at position 8234 in three human intestinal and two pork E. faecium isolates. There were no significant associations (P > 0.5) between Tn1546 type and GRE source or enterococcal species. Virulence determinants were detected in all reservoirs but were significantly more frequent (P < 0.02) among clinical strains. Multiple determinants were found in clinical and meat Enterococcus faecalis isolates. The presence of indistinguishable vanA elements (mostly plasmid borne) and virulence determinants in different species and PFGE-diverse populations in the presence of host-specific purK housekeeping genes suggested that all GRE might be potential reservoirs of resistance determinants and virulence traits transferable to human-adapted clusters

    Trapped vortex cell for aeronautical applications: flow analysis through PIV and Wavelet transform tools.

    Get PDF
    Abstract Results of the application of a trapped vortex cell to an airfoil with the aim of improving the aerodynamic performances are presented for two complementary experiments arranged at CIRA and at Politecnico di Torino. In the CIRA experiments, PIV measurements on a simplified configuration were carried out to characterize the trapped vortical structure and its effect on the separating flow downstream of the cell. In the experimental investigation at Politecnico di Torino, static pressure distributions were measured around a complete airfoil model, to yield lift and pitching moment coefficients. Wake surveys were also carried out to measure the drag. To study the unsteady phenomena inside the cavity pressure fluctuations signals were also investigated using Kulite sensors. In both experiments, the angle of attack of the airfoil and the Reynolds number were varied. It is shown that the flow inside the cell is highly unsteady with significant shedding of flow structures downstream. This phenomenon results in a large region of separated flow, in higher drag and lower lift. By contrast, the cell flow is considerably stabilized and regularized by applying distributed suction over the cell wall. As a result, the flow downstream of the cell reattaches and lower drag and larger lift are observed
    • …
    corecore