7,891 research outputs found

    Test particle motion in a gravitational plane wave collision background

    Get PDF
    Test particle geodesic motion is analysed in detail for the background spacetimes of the degenerate Ferrari-Ibanez colliding gravitational wave solutions. Killing vectors have been used to reduce the equations of motion to a first order system of differential equations which have been integrated numerically. The associated constants of the motion have also been used to match the geodesics as they cross over the boundary between the single plane wave and interaction zones.Comment: 11 pages, 6 Postscript figure

    A constant dark matter halo surface density in galaxies

    Get PDF
    We confirm and extend the recent finding that the central surface density r_0*rho_0 galaxy dark matter halos, where r_0 and rho_0 are the halo core radius and central density, is nearly constant and independent of galaxy luminosity. Based on the co-added rotation curves of about 1000 spiral galaxies, mass models of individual dwarf irregular and spiral galaxies of late and early types with high-quality rotation curves and, galaxy-galaxy weak lensing signals from a sample of spiral and elliptical galaxies, we find that log(r_0*rho_0) = 2.15 +- 0.2, in units of log(Msol/pc^2). We also show that the observed kinematics of Local Group dwarf spheroidal galaxies are consistent with this value. Our results are obtained for galactic systems spanning over 14 magnitudes, belonging to different Hubble Types, and whose mass profiles have been determined by several independent methods. In the same objects, the approximate constancy of rho_0*r_0 is in sharp contrast to the systematical variations, by several orders of magnitude, of galaxy properties, including rho_0 and central stellar surface density.Comment: Accepted for publication in MNRAS. 9 pages, 4 figure

    Implication of the PAMELA antiproton data for dark matter indirect detection at LHC

    Full text link
    Since the PAMELA results on the "anomalously" high positron fraction and the lack of antiproton excess in our Galaxy, there has been a tremendous number of studies advocating new types of dark matter, with larger couplings to electrons than to quarks. This raises the question of the production of dark matter particles (and heavy associated coloured states) at LHC. Here, we explore a very simple benchmark dark matter model and show that, in spite of the agreement between the PAMELA antiproton measurements and the expected astrophysical secondary background, there is room for large couplings of a WIMP candidate to heavy quarks. Contrary to what could have been naively anticipated, the PAMELA pbar/p measurements do not challenge dark matter model building, as far as the quark sector is concerned. A quarkophillic species is therefore not forbidden.Owing to these large couplings, one would expect that a new production channel opens up at the LHC, through quark--quark and quark--gluon interactions. Alas, when the PDF of the quark is taken into account, prospects for a copious production fade away.Comment: 7 pages, 2 figures, captions of some figures modified, main conclusion unchange

    Indirect signals from light neutralinos in supersymmetric models without gaugino mass unification

    Full text link
    We examine indirect signals produced by neutralino self-annihilations, in the galactic halo or inside celestial bodies, in the frame of an effective MSSM model without gaugino-mass unification at a grand unification scale. We compare our theoretical predictions with current experimental data of gamma-rays and antiprotons in space and of upgoing muons at neutrino telescopes. Results are presented for a wide range of the neutralino mass, though our discussions are focused on light neutralinos. We find that only the antiproton signal is potentially able to set constraints on very low-mass neutralinos, below 20 GeV. The gamma-ray signal, both from the galactic center and from high galactic latitudes, requires significantly steep profiles or substantial clumpiness in order to reach detectable levels. The up-going muon signal is largely below experimental sensitivities for the neutrino flux coming from the Sun; for the flux from the Earth an improvement of about one order of magnitude in experimental sensitivities (with a low energy threshold) can make accessible neutralino masses close to O, Si and Mg nuclei masses, for which resonant capture is operative.Comment: 17 pages, 1 tables and 5 figures, typeset with ReVTeX4. The paper may also be found at http://www.to.infn.it/~fornengo/papers/indirect04.ps.gz or through http://www.astroparticle.to.infn.it/. Limit from BR(Bs--> mu+ mu-) adde

    Accelerator Testing of the General Antiparticle Spectrometer, a Novel Approach to Indirect Dark Matter Detection

    Full text link
    We report on recent accelerator testing of a prototype general antiparticle spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches that exploits the antideuterons produced in neutralino-neutralino annihilations. GAPS captures these antideuterons into a target with the subsequent formation of exotic atoms. These exotic atoms decay with the emission of X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. This signature uniquely characterizes the antideuterons. Preliminary analysis of data from a prototype GAPS in an antiproton beam at the KEK accelerator in Japan has confirmed the multi-X-ray/pion star topology and indicated X-ray yields consistent with prior expectations. Moreover our success in utilizing solid rather than gas targets represents a significant simplification over our original approach and offers potential gains in sensitivity through reduced dead mass in the target area.Comment: 18 pages, 9 figures, submitted to JCA

    General Analysis of Antideuteron Searches for Dark Matter

    Full text link
    Low energy cosmic ray antideuterons provide a unique low background channel for indirect detection of dark matter. We compute the cosmic ray flux of antideuterons from hadronic annihilations of dark matter for various Standard Model final states and determine the mass reach of two future experiments (AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron detection over current bounds. We consider generic models of scalar, fermion, and massive vector bosons as thermal dark matter, describe their basic features relevant to direct and indirect detection, and discuss the implications of direct detection bounds on models of dark matter as a thermal relic. We also consider specific dark matter candidates and assess their potential for detection via antideuterons from their hadronic annihilation channels. Since the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we find that antideuterons can be a good indirect detection channel for a variety of thermal relic electroweak scale dark matter candidates, even when the rate for direct detection is highly suppressed.Comment: 44 pages, 15 Figure

    Group selection models in prebiotic evolution

    Full text link
    The evolution of enzyme production is studied analytically using ideas of the group selection theory for the evolution of altruistic behavior. In particular, we argue that the mathematical formulation of Wilson's structured deme model ({\it The Evolution of Populations and Communities}, Benjamin/Cumings, Menlo Park, 1980) is a mean-field approach in which the actual environment that a particular individual experiences is replaced by an {\it average} environment. That formalism is further developed so as to avoid the mean-field approximation and then applied to the problem of enzyme production in the prebiotic context, where the enzyme producer molecules play the altruists role while the molecules that benefit from the catalyst without paying its production cost play the non-altruists role. The effects of synergism (i.e., division of labor) as well as of mutations are also considered and the results of the equilibrium analysis are summarized in phase diagrams showing the regions of the space of parameters where the altruistic, non-altruistic and the coexistence regimes are stable. In general, those regions are delimitated by discontinuous transition lines which end at critical points.Comment: 22 pages, 10 figure

    Evaluation of the Efficacy and Safety of an Imidacloprid 10 % / Moxidectin 1 % Spot-on Formulation (Advocate®, Advantage® Multi) in Cats Naturally Infected with Capillaria aerophila

    Get PDF
    The parasitic nematode Capillaria (C.) aerophila affects the respiratory system of domestic and wild animals and, albeit rarely, human beings. In cats the infection may be subclinical, or present as chronic bronchitis with various respiratory clinical signs. In Europe there is no licensed product for the treatment of pet capillariosis. The present study aimed to deliver further evidence of the efficacy and safety of a spot-on formulation containing moxidectin 1 % (w/v) and imidacloprid 10 % (w/v) (Advocate (R), Advantage (R) Multi, Bayer) in the treatment of C. aerophila infection in cats when administered once at the approved dose (one pipette 0.4 ml for cats weighing 1-4 kg, one pipette 0.8 ml for cats weighing 4-8 kg). Efficacy was tested on days 7 +/- 1 and 11 +/- 1 following treatment on day 0 and compared to pre-treatment faecal egg counts on days -6 +/- 2 and -2 +/- 2. Overall, 41 cats were enrolled in two groups: G1, treated with Advocate (R) (n=20 cats) and G2, left untreated (n=21 cats). All G1 cats were negative for C. aerophila faecal egg output at the post-treatment evaluation (efficacy: 100 %) while all G2 cats were persistently infested with an average of 195.2 EPG. Differences in mean EPG values were statistically significant (p< 0.001). Of the eleven G1 cats that showed respiratory signs at pre-treatment enrolment, nine fully recovered after the administration of Advocate (R). No adverse events occurred in treated cats. This trial confirmed that Advocate (R) is safe and effective in the treatment of feline lung capillariosis in naturally infected cats

    Spinning test particles and clock effect in Kerr spacetime

    Full text link
    We study the motion of spinning test particles in Kerr spacetime using the Mathisson-Papapetrou equations; we impose different supplementary conditions among the well known Corinaldesi-Papapetrou, Pirani and Tulczyjew's and analyze their physical implications in order to decide which is the most natural to use. We find that if the particle's center of mass world line, namely the one chosen for the multipole reduction, is a spatially circular orbit (sustained by the tidal forces due to the spin) then the generalized momentum PP of the test particle is also tangent to a spatially circular orbit intersecting the center of mass line at a point. There exists one such orbit for each point of the center of mass line where they intersect; although fictitious, these orbits are essential to define the properties of the spinning particle along its physical motion. In the small spin limit, the particle's orbit is almost a geodesic and the difference of its angular velocity with respect to the geodesic value can be of arbitrary sign, corresponding to the spin-up and spin-down possible alignment along the z-axis. We also find that the choice of the supplementary conditions leads to clock effects of substantially different magnitude. In fact, for co-rotating and counter-rotating particles having the same spin magnitude and orientation, the gravitomagnetic clock effect induced by the background metric can be magnified or inhibited and even suppressed by the contribution of the individual particle's spin. Quite surprisingly this contribution can be itself made vanishing leading to a clock effect undistiguishable from that of non spinning particles. The results of our analysis can be observationally tested.Comment: IOP macros, eps figures n. 12, to appear on Classical and Quantum Gravity, 200
    corecore