23 research outputs found

    Stage-specific expression of a Schistosoma mansoni polypeptide similar to the vertebrate regulatory protein stathmin.

    Get PDF
    The ubiquitous vertebrate protein stathmin is expressed and phosphorylated in response to a variety of external and internal signals. Stathmin, in turn, controls cell growth and differentiation through its capacity to regulate microtubule assembly dynamics. This is the first report on the molecular cloning and characterization of a stathmin-like protein (SmSLP) in an invertebrate, the human blood fluke Schistosoma mansoni. SmSLP is first synthesized at high levels in the intermediate molluscan host and completely disappears 48 h after penetration into the mammalian host. The protein is preferentially iodinated in intact immature parasites using the Bolton-Hunter reagent, can be quantitatively extracted in high salt buffers, and remains soluble after boiling. Native SmSLP was partially sequenced, and its complete structure was derived from the cloning and sequencing of its cDNA. The sequence is up to 26% identical to vertebrate stathmin sequences and contains two potential phosphorylation sites. Native SmSLP is indeed phosphorylated because phosphatase digestion shifts its mobility in electrofocusing gels. SmSLP associates with tubulin, as suggested by immune co-precipitation results. In vitro experiments demonstrated that SmSLP inhibits tubulin assembly and causes the depolymerization of preassembled microtubules, thus probably fulfilling regulatory roles in critical steps of schistosome development

    Praziquantel

    No full text

    Schistosomicides and DNA functioning

    No full text

    Will new antischistosomal drugs finally emerge?

    No full text
    It has been often observed that the chemotherapeutic armamentarium against an important disease such as schistosomiasis consists of just one drug, praziquantel. Thus, development of drug resistance is an impending danger, with serious implications for the health protection of many millions of people. This rational and legitimate concern might now begin to be relieved by the recent proposal of a new class of compounds that could represent a novel source of drugs against schistosomiasis. © 2008 Elsevier Ltd. All rights reserved

    Genetic complementation analysis of two independently isolated hycanthone-resistant strains of Schistosoma mansoni

    No full text
    The objective of this study is to determine whether various hycanthone resistant strains of schistosomes which have been independently isolated are all affected in the same gene. A strain obtained from a Brazilian patient was compared with a strain of Puerto Rican origin selected in the laboratory. If the mutation conferring resistance involved two different genes, one would expect that the progeny of a cross between the two strains would show complementation, i.e. it would be sensitive to the drug. We have performed such a cross and obtained F1 hybrid worms wich were essentially all resistant, thus suggesting that the mutation conferring resistance in the two strains involves the same gene

    The schistosome enzyme that activates oxamniquine has the characteristics of a sulfotransferase

    No full text
    Available evidence suggests that the antischistosomal drug oxamniquine is converted to a reactive ester by a schistosome enzyme that is missing in drug-resistant parasites. This study presents data supporting the idea that the active ester is a sulfate and the activating enzyme is a sulfotransferase. Evidence comes from the fact that the parasite extract loses its activating capability upon dialysis, implying the requirement of some dialyzable cofactor. The addition of the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) restored activity of the dialyzate, a strong indication that a sulfotransferase is probably involved. Classical sulfotransferase substrates like b-estradiol and quercetin competitively inhibited the activation of oxamniquine. Furthermore, these substrates could be sulfonated in vitro using an extract of sensitive (but not resistant) schistosomes. Gel filtration analysis showed that the activating factor eluted in a fraction corresponding to a molecular mass of about 32 kDa, which is the average size of typical sulfotransferase subunits. Ion exchange and affinity chromatography confirmed the sulfotransferase nature of the enzyme. Putative sulfotransferases present in schistosome databases are being examined for their possible role as oxamniquine activators
    corecore