4,012 research outputs found

    Alfven Wave-Driven Supernova Explosion

    Full text link
    We investigate the role of Alfven waves in the core-collapse supernova (SN) explosion. We assume that Alfven waves are generated by convections inside a proto-neutron star (PNS) and emitted from its surface. Then these waves propagate outwards, dissipate via nonlinear processes, and heat up matter around a stalled prompt shock. To quantitatively assess the importance of this process for the revival of the stalled shock, we perform 1D time-dependent hydrodynamical simulations, taking into account the heating via the dissipation of Alfven waves that propagate radially outwards along open flux tubes. We show that the shock revival occurs if the surface field strength is larger than ~2e15 G and if the amplitude of velocity fluctuation at the PNS surface is larger than 20% of the local sound speed. Interestingly, the Alfven wave mechanism is self-regulating in the sense that the explosion energy is not very sensitive to the surface field strength and initial amplitude of Alfven waves as long as they are larger than the threshold values given above.Comment: 7 pages, 3 figures embedded, submitted to Ap

    The first magnetic maps of a pre-main sequence binary star system - HD 155555

    Get PDF
    We present the first maps of the surface magnetic fields of a pre-main sequence binary system. Spectropolarimetric observations of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) system were obtained at the Anglo-Australian Telescope in 2004 and 2007. Both datasets are analysed using a new binary Zeeman Doppler imaging (ZDI) code. This allows us to simultaneously model the contribution of each component to the observed circularly polarised spectra. Stellar brightness maps are also produced for HD 155555 and compared to previous Doppler images. Our radial magnetic maps reveal a complex surface magnetic topology with mixed polarities at all latitudes. We find rings of azimuthal field on both stars, most of which are found to be non-axisymmetric with the stellar rotational axis. We also examine the field strength and the relative fraction of magnetic energy stored in the radial and azimuthal field components at both epochs. A marked weakening of the field strength of the secondary star is observed between the 2004 and 2007 epochs. This is accompanied by an apparent shift in the location of magnetic energy from the azimuthal to radial field. We suggest that this could be indicative of a magnetic activity cycle. We use the radial magnetic maps to extrapolate the coronal field (by assuming a potential field) for each star individually - at present ignoring any possible interaction. The secondary star is found to exhibit an extreme tilt (~75 deg) of its large scale magnetic field to that of its rotation axis for both epochs. The field complexity that is apparent in the surface maps persists out to a significant fraction of the binary separation. Any interaction between the fields of the two stars is therefore likely to be complex also. Modelling this would require a full binary field extrapolation.Comment: 17 pages, 12 figures, accepted for publication in MNRA

    From Histopathology to High-Resolution Ultrasound Imaging of Skin Scars

    Get PDF
    Nowadays, modern ultrasound machines and high-frequency transducers allow us to accurately assess the superficial soft tissues of the human body. In this sense, sonographic evaluation of the skin and related pathologies is progressively growing in the pertinent literature. To the best of our knowledge, a standardized sonographic protocol focused on the assessment of pathological skin scars is still lacking. As such, the main purpose of the present study was to propose a technical guide to sonographically assess skin scars in the daily practice of clinicians—starting from knowledge on their histopathological features. In order to standardize the ultrasound examination, a superficial-to-deep, layer-by-layer approach has been proposed to optimize its reproducibility and to promote a common language among the different healthcare providers

    Multi-wavelength observing of a forming solar-like star

    Full text link
    V2129 Oph is a 1.35 solar mass classical T Tauri star, known to possess a strong and complex magnetic field. By extrapolating from an observationally derived magnetic surface map, obtained through Zeeman-Doppler imaging, models of V2129 Oph's corona have been constructed, and used to make predictions regarding the global X-ray emission measure, the amount of modulation of X-ray emission, and the density of accretion shocks. In late June 2009 we will under take an ambitious multi-wavelength, multi-observing site, and near contemporaneous campaign, combining spectroscopic optical, nIR, UV, X-ray, spectropolarimetric and photometric monitoring. This will allow the validity of the 3D field topologies derived via field extrapolation to be determined.Comment: 4 pages, proceedings of the 3rd MSSL workshop on High Resolution X-ray Spectroscopy: towards IX

    X-ray Doppler Imaging of 44i Boo with Chandra

    Get PDF
    Chandra High-Energy Transmission Grating observations of the bright eclipsing contact binary 44i Boo show X-ray line profiles which are Doppler-shifted by orbital motions. The X-ray emission spectrum contains a multitude of lines superimposed on a weak continuum, with strong lines of O VIII, Ne X, Fe XVII, and Mg XII. The profiles of these lines from the total observed spectrum show Doppler-broadened widths of ~ 550 km s^{-1}. Line centroids vary with orbital phase, indicating velocity changes of > 180 km s^{-1}. The first-order light curve shows significant variability, but no clear evidence for either primary or secondary eclipses. Flares are observed for all spectral ranges; additionally, the light curve constructed near the peak of the emission measure distribution (T_e = 5 to 8 X 10^6 K) shows quiescent variability as well as flares. The phase-dependences of line profiles and light curves together imply that at least half of the emission is localized at high latitude. A simple model with two regions on the primary star at relatively high latitude reproduces the observed line profile shifts and quiescent light curve. These first clear X-ray Doppler shifts of stellar coronal material illustrate the power of Chandra.Comment: 15 pages, 6 figures to be published in Astrophysical Journal Letter

    Variable X-ray emission from the accretion shock in the classical T Tauri star V2129 Ophiuchi

    Get PDF
    Context. The soft X-ray emission from high density plasma observed in several CTTS is usually associated with the accretion process. However, it is still unclear whether this high density “cool” plasma is heated in the accretion shock, or if it is coronal plasma fed or modified by the accretion process. Aims. We conducted a coordinated quasi-simultaneous optical and X-ray observing campaign of the CTTS V2129 Oph. In this paper, we analyze Chandra grating spectrometer data and attempt to correlate the observed X-ray emitting plasma components with the characteristics of the accretion process and the stellar magnetic field constrained by simultaneous optical observations. Methods. We analyze a 200 ks Chandra/HETGS observation, subdivided into two 100 ks segments, of the CTTS V2129 Oph. For the two observing segments corresponding to two different phases within one stellar rotation, we measure the density of the cool plasma component and the emission measure distribution. Results. The X-ray emitting plasma covers a wide range of temperatures: from 2 up to 34 MK. The cool plasma component of V2129 Oph (T ≈ 3−4 MK) varies between the two segments of the Chandra observation: during the first observing segment high density plasma (log N_c = 12.1_(-1.1)^(+0.6)) with high EM at ~3−4 MK is present, whereas, during the second segment, this plasma component has lower EM and lower density (log N_e 3 R_⋆). Conclusions. Our observation provides additional confirmation that the dense cool plasma at a few MK in CTTS is material heated in the accretion shock. The variability of this cool plasma component on V2129 Oph may be explained in terms of X-rays emitted in the accretion shock and seen with different viewing angles at the two rotational phases probed by our observation. In particular, during the first time interval a direct view of the shock region is possible, while, during the second, the accretion funnel itself intersects the line of sight to the shock region, preventing us from observing the accretion-driven X-rays

    X-ray emission from T Tauri stars

    Full text link
    We have modelled the X-ray emission of T Tauri stars assuming that they have isothermal, magnetically-confined coronae. These coronae extend outwards until either the pressure of the hot coronal gas overcomes the magnetic field, or, if the corona interacts with a disk before this happens, by the action of the disk itself. This work is motivated by the results of the Chandra Orion Ultradeep Project (COUP) that show an increase in the X-ray emission measure with increasing stellar mass. We find that this variation (and its large scatter) result naturally from the variation in the sizes of the stellar coronae. The reduction in the magnitude of the X-ray emission due to the presence of a disk stripping the outer parts of the stellar corona is most pronounced for the lower mass stars. The higher mass stars with their greater surface gravities have coronae than typically do not extend out as far as the inner edge of the disk and so are less affected by it. For these stars, accretion takes place along open field lines that connect to the disk. By extrapolating surface magnetograms of young main sequence stars we have examined the effect on the X-ray emission of a realistic degree of field complexity. We find densities consistent with estimates from modelling of individual flares. A simple dipole field in contrast gives densities typically an order of magnitude less. We suggest that T Tauri stars have coronal fields that are slightly more extended than their main sequence counterparts, but not as extended as a purely dipolar fields.Comment: 12 pages, 13 figures, to appear in Monthly Notices of the Royal Astronomical Societ
    • 

    corecore