648 research outputs found

    The Symons-Page Report

    Get PDF

    Character education in summer camps ..

    Full text link
    Typewritten sheets in cover. "Camp Hazen" booklet inserted between p. 14-15. "Camp Hazen attainment system" inserted between p. 49-50. Thesis (M.A.)--Boston University This item was digitized by the Internet Archive. Bibliography: p. 162-173

    Marine-Nonmarine Relationships in the Cenozoic Section of California

    Get PDF
    Highly fossiliferous marine sediments of Cenozoic age are widely distributed in the coastal parts of central and southern California, as well as in the Sacramento-San Joaquin Valley region farther inland. Even more widespread are nonmarine, chiefly terrestrial, sequences of Cenozoic strata, many of which contain vertebrate faunas characterized by a dominance of mammalian forms. These strata are most abundant in the Mojave Desert region and in the interior parts of areas that lie nearer the coast. Marine and nonmarine strata are in juxtaposition or interfinger with one another at many places, especially in the southern Coast Ranges and the San Joaquin basin to the east, in the Transverse Ranges and adjacent basins, and in several parts of the Peninsular Range region and the Coachella-Imperial Valley to the east. These occurrences of closely related marine and nonmarine deposits permit critical comparisons between the Pacific Coast mammalian (terrestrial) and invertebrate (marine) chronologies, and it is with these comparisons-examined in the light of known stratigraphic relations-that this paper is primarily concerned. The writers have drawn freely upon the published record for geologic and paleontologic data. In addition, Durham has reviewed many of the invertebrate faunas and has checked the field relations of marine strata in parts of the Ventura and Soledad basins, the Tejon Hills, and the Cammatta Ranch; Jahns has studied new vertebrate material from the Soledad basin and has mapped this area and critical areas in the vicinity of San Diego, in the Ventura basin, and in the Caliente Range; and Savage has made a detailed appraisal of the vertebrate assemblages, and has mapped critical areas in the Tejon Hills. The areas and localities that have been most carefully scrutinized are shown in figure 1. The manuscript was reviewed in detail by G. Edward Lewis of the U. S. Geological Survey, who made numerous comments and suggestions that resulted in considerable improvement. It should be noted that his views are not wholly compatible with some of those expressed in this paper, and that his critical appraisal thus was particularly helpful

    Household Demand for Broadband Internet Service

    Get PDF
    As part of the Federal Communications Commission (“FCC”) National Broadband Report to Congress, we have been asked to conduct a survey to help determine consumer valuations of different aspects of broadband Internet service. This report details our methodology, sample and preliminary results. We do not provide policy recommendations. This draft report uses data obtained from a nationwide survey during late December 2009 and early January 2010 to estimate household demand for broadband Internet service. The report combines household data, obtained from choices in a real market and an experimental setting, with a discrete-choice model to estimate the marginal willingness-to-pay (WTP) for improvements in eight Internet service characteristics.

    Marine-Nonmarine Relationships in the Cenozoic Section of California

    Get PDF
    Highly fossiliferous marine sediments of Cenozoic age are widely distributed in the coastal parts of central and southern California, as well as in the Sacramento-San Joaquin Valley region farther inland. Even more widespread are nonmarine, chiefly terrestrial, sequences of Cenozoic strata, many of which contain vertebrate faunas characterized by a dominance of mammalian forms. These strata are most abundant in the Mojave Desert region and in the interior parts of areas that lie nearer the coast. Marine and nonmarine strata are in juxtaposition or interfinger with one another at many places, especially in the southern Coast Ranges and the San Joaquin basin to the east, in the Transverse Ranges and adjacent basins, and in several parts of the Peninsular Range region and the Coachella-Imperial Valley to the east. These occurrences of closely related marine and nonmarine deposits permit critical comparisons between the Pacific Coast mammalian (terrestrial) and invertebrate (marine) chronologies, and it is with these comparisons-examined in the light of known stratigraphic relations-that this paper is primarily concerned. The writers have drawn freely upon the published record for geologic and paleontologic data. In addition, Durham has reviewed many of the invertebrate faunas and has checked the field relations of marine strata in parts of the Ventura and Soledad basins, the Tejon Hills, and the Cammatta Ranch; Jahns has studied new vertebrate material from the Soledad basin and has mapped this area and critical areas in the vicinity of San Diego, in the Ventura basin, and in the Caliente Range; and Savage has made a detailed appraisal of the vertebrate assemblages, and has mapped critical areas in the Tejon Hills. The areas and localities that have been most carefully scrutinized are shown in figure 1. The manuscript was reviewed in detail by G. Edward Lewis of the U. S. Geological Survey, who made numerous comments and suggestions that resulted in considerable improvement. It should be noted that his views are not wholly compatible with some of those expressed in this paper, and that his critical appraisal thus was particularly helpful

    Molecular Hydrogen in the FUSE Translucent Lines of Sight: The Full Sample

    Full text link
    We report total abundances and related parameters for the full sample of the FUSE survey of molecular hydrogen in 38 translucent lines of sight. New results are presented for the "second half" of the survey involving 15 lines of sight to supplement data for the first 23 lines of sight already published. We assess the correlations between molecular hydrogen and various extinction parameters in the full sample, which covers a broader range of conditions than the initial sample. In particular, we are now able to confirm that many, but not all, lines of sight with shallow far-UV extinction curves and large values of the total-to-selective extinction ratio, RVR_V = AVA_V / E(BV)E(B-V) -- characteristic of larger than average dust grains -- are associated with particularly low hydrogen molecular fractions (fH2f_{\rm H2}). In the lines of sight with large RVR_V, there is in fact a wide range in molecular fractions, despite the expectation that the larger grains should lead to less H2_2 formation. However, we see specific evidence that the molecular fractions in this sub-sample are inversely related to the estimated strength of the UV radiation field and thus the latter factor is more important in this regime. We have provided an update to previous values of the gas-to-dust ratio, NN(Htot_{\rm tot})/E(BV)E(B-V), based on direct measurements of NN(H2_2) and NN(H I). Although our value is nearly identical to that found with Copernicus data, it extends the relationship by a factor of 2 in reddening. Finally, as the new lines of sight generally show low to moderate molecular fractions, we still find little evidence for single monolithic "translucent clouds" with fH2f_{\rm H2} \sim 1.Comment: 35 pages, 5 tables, 7 figures, accepted for publication in The Astrophysical Journal Supplements Serie

    Fossil slabs attached to unsubducted fragments of the Farallon plate

    Get PDF
    As the Pacific–Farallon spreading center approached North America, the Farallon plate fragmented into a number of small plates. Some of the microplate fragments ceased subducting before the spreading center reached the trench. Most tectonic models have assumed that the subducting oceanic slab detached from these microplates close to the trench, but recent seismic tomography studies have revealed a high-velocity anomaly beneath Baja California that appears to be a fossil slab still attached to the Guadalupe and Magdalena microplates. Here, using surface wave tomography, we establish the lateral extent of this fossil slab and show that it is correlated with the distribution of high-Mg andesites thought to derive from partial melting of the subducted oceanic crust. We also reinterpret the high seismic velocity anomaly beneath the southern central valley of California as another fossil slab extending to a depth of 200 km or more that is attached to the former Monterey microplate. The existence of these fossil slabs may force a reexamination of models of the tectonic evolution of western North America over the last 30 My
    corecore