1,686 research outputs found

    Method and apparatus for detection of underivatized amines and amino acids utilizing end column addition of Ru(bpy).sub.3.sup.2+

    Get PDF
    A method and an apparatus for detecting amines or amino acids is disclosed. The apparatus generally includes a capillary electrophoresis separation tube with a post-capillary reactor positioned at the end of the tube to immediately receive separated samples from the tube. The post-capillary reactor includes a solution of Ru(bpy)3 2+ buffered with a base. The post capillary reactor further includes an electrode assembly for providing current to the solution to convert nonluminescing Ru(bpy)3 2+ to luminescing Ru(bpy)3 3+. The method generally includes separating the desired analyte from the sample, contacting the analyte with the solution to produce luminescence, and then photometrically measuring the amount of analyte present as a function of the luminescence

    Tissue Glycogen and Extracellular Buffering Limit the Survival of Red-Eared Slider Turtles during Anoxic Submergence at 3°C

    Get PDF
    The goal of this study was to identify the factors that limit the survival of the red-eared slider turtle Trachemys scripta during long-term anoxic submergence at 3°C. We measured blood acid-base status and tissue lactate and glycogen contents after 13, 29, and 44 d of submergence from ventricle, liver, carapace (lactate only), and four skeletal muscles. We also measured plasma Ca2+, Mg2+, Na+, K+, Cl-, inorganic phosphate (Pi), lactate, and glucose. After 44 d, one of the six remaining turtles died, while the other turtles were in poor condition and suffered from a severe acidemia (blood pH = 7.09 from 7.77) caused by lactic acidosis (plasma lactate 91.5 mmol L-1). An initial respiratory acidosis attenuated after 28 d. Lactate rose to similar concentrations in ventricle and skeletal muscle (39.3–46.1 μmol g-1). Liver accumulated the least lactate (21.8 μmol g-1), and carapace accumulated the most lactate (68.9 μmol g-1). Plasma Ca2+ and Mg2+ increased significantly throughout submergence to levels comparable to painted turtles at a similar estimated lactate load. Glycogen depletion was extensive in all tissues tested: by 83% in liver, by 90% in ventricle, and by 62%–88% in muscle. We estimate that the shell buffered 69.1% of the total lactate load, which is comparable to painted turtles. Compared with painted turtles, predive tissue glycogen contents and plasma HCO3- concentrations were low.We believe these differences contribute to the poorer tolerance to long-term anoxic submergence in red-eared slider turtles compared with painted turtles

    Spectral Bandwidth Reduction of Thomson Scattered Light by Pulse Chirping

    Get PDF
    Based on single particle tracking in the framework of classical Thomson scattering with incoherent superposition, we developed a fully relativistic, three dimensional numerical code that calculates and quantifies the characteristics of emitted radiation when a relativistic electron beam collides head-on with a focused counter-propagating intense laser field. The developed code has been benchmarked against analytical expressions, based on the plane wave approximation to the laser field, derived in (1). For sufficiently long duration laser pulses, we find that the scattered radiation spectrum is broadened due to interferences arising from the pulsed nature of the laser. We show that by appropriately chirping the scattering laser pulse, the spectral broadening could be minimized.Comment: 11 pages, 3 figures, 25 reference

    Impact of species-specific dispersal and regional stochasticity on estimates of population viability in stream metapopulations

    Get PDF
    Abstract Species dispersal is a central component of metapopulation models. Spatially realistic metapopulation models, such as stochastic patch-occupancy models (SPOMs), quantify species dispersal using estimates of colonization potential based on interpatch distance (distance decay model). In this study we compare the parameterization of SPOMs with dispersal and patch dynamics quantified directly from empirical data. For this purpose we monitored two metapopulations of an endangered minnow, redside dace (Clinostomus elongatus), using mark-recapture techniques across 43 patches, re-sampled across a 1 year period. More than 2,000 fish were marked with visible implant elastomer tags coded for patch location and dispersal and patch dynamics were monitored. We found that species-specific dispersal and distance decay models provided qualitatively similar rankings of viable patches; however, there were differences of several orders of magnitude in the estimated intrinsic mean times to extinction, from 24 and 148 years to 362 and [100,000 years, depending on the population. We also found that the rate of regional stochasicity had a dramatic impact for the estimate of species viability, and in one case altered the trajectory of our metapopulation from viable to non-viable. The divergent estimates in time to extinction times were likely due to a combination species-specific behavior, the dendritic nature of stream metapopulations, and the rate of regional stochasticity. We demonstrate the importance of developing comparative analyses using species-and patch-specific data when determining quantitative estimates for mean time to extinction, which in the case of redside dace, were highly sensitive to different estimates of dispersal

    An investigation of conformable antennas for the astronaut backpack communication system

    Get PDF
    During periods of extravehicular activity it is obviously important that communication and telemetry systems continue to function independently of the astronaut. A system of antennas must therefore be designed that will provide the necessary isotropic coverage using circular polarization over both the transmit and receive frequency bands. To avoid the inherent physical limitations to motion that would be incurred with any sort of protruding antenna, it is necessary that the radiator be essentially flush-mounted or conformable to the structure on which it is attached. Several individual antenna elements are needed for the desired coverage. Both the particular elements chosen and their location determine the ultimate radiation pattern of the overall system. For these reasons a two-fold research plan was undertaken. First, individual elements were investigated and designed. Then various mounting locations were considered and the radiation patterns were predicted taking into account the effects of the astronaut's backpack
    • …
    corecore