5 research outputs found

    Development of spatial density maps based on geoprocessing web services: application to tuberculosis incidence in Barcelona, Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information.</p> <p>Methods</p> <p>Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database.</p> <p>Results</p> <p>The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts.</p> <p>Conclusions</p> <p>In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios.</p

    Geolocalización en TB: producción de mapas de distribución espacial en TB en Barcelona

    No full text
    Tener en cuenta la componenete geográfica va más allá de representar un punto sobre un mapa: consiste en relacionar geográficamente diversas variables y representarlas conjuntamente para generar información. En este sentido es posible relacionar, por ejemplo, variables sanitarias con variables socio-económicas y extraer de ese cruce, la información pertinente. Por otro lado, el hecho de representar la información en un mapa hace la información más legible y fácil de interpretar, con lo que aumenta la calidad de las conclusiones obtenidas, así como la eficiencia y eficacia con que se obtienen.Taking into account the geographic component goes beyond marking a cross on a map: it means to link geographically a number of variables and represent them altogether in order to generate information. In that sense it is possible to link, for instance, socio-economic variables with medical variables, extracting the relevant information from the said intersection. On the other hand, representing the information on a map makes information more readable and easier to interpret, enhancing the quality of the conclusions obtained, together with the corresponding efficacy and the efficiency

    Development of spatial density maps based on geoprocessing web services: application to tuberculosis incidence in Barcelona, Spain

    No full text
    Background, health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information.Methods, data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database.Results: The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. Conclusions, in this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios

    Methods used in the spatial analysis of tuberculosis epidemiology: a systematic review

    No full text
    corecore