14 research outputs found

    Building a network of ADPKD reference centres across Europe: the EuroCYST initiative

    Get PDF
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic inherited kidney disease, affecting an estimated 600 000 individuals in Europe. The disease is characterized by age-dependent development of a multiple cysts in the kidneys, ultimately leading to end-stage renal failure and the need of renal replacement therapy in the majority of patients, typically by the fifth or sixth decade of life. The variable disease course, even within the same family, remains largely unexplained. Similarly, assessing disease severity and prognosis in an individual with ADPKD remains difficult. Epidemiological studies are limited due to the fragmentation of ADPKD research in Europe. METHODS: The EuroCYST initiative aims: (i) to harmonize and develop common standards for ADPKD research by starting a collaborative effort to build a network of ADPKD reference centres across Europe and (ii) to establish a multicentric observational cohort of ADPKD patients. This cohort will be used to study factors influencing the rate of disease progression, disease modifiers, disease stage-specific morbidity and mortality, health economic issues and to identify predictive disease progression markers. Overall, 1100 patients will be enrolled in 14 study sites across Europe. Patients will be prospectively followed for at least 3 years. Eligible patients will not have participated in a pharmaceutical clinical trial 1 year before enrollment, have clinically proven ADPKD, an estimated glomerular filtration rate (eGFR) of 30 mL/min/1.73 m(2) and above, and be able to provide written informed consent. The baseline visit will include a physical examination and collection of blood, urine and DNA for biomarker and genetic studies. In addition, all participants will be asked to complete questionnaires detailing self-reported health status, quality of life, socioeconomic status, health-care use and reproductive planning. All subjects will undergo annual follow-up. A magnetic resonance imaging (MRI) scan will be carried out at baseline, and patients are encouraged to undergo a second MRI at 3-year follow-up for qualitative and quantitative kidney and liver assessments. CONCLUSIONS: The ADPKD reference centre network across Europe and the observational cohort study will enable European ADPKD researchers to gain insights into the natural history, heterogeneity and associated complications of the disease as well as how it affects the lives of patients across Europ

    Towards a Rigorous Network of Protein-Protein Interactions of the Model Sulfate Reducer Desulfovibrio vulgaris Hildenborough

    Get PDF
    Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction

    Chemical aminoacylation of tRNAs with fluorinated amino acids for in vitro protein mutagenesis

    No full text
    This article describes the chemical aminoacylation of the yeast phenylalanine suppressor tRNA with a series of amino acids bearing fluorinated side chains via the hybrid dinucleotide pdCpA and ligation to the corresponding truncated tRNA species. Aminoacyl-tRNAs can be used to synthesize biologically relevant proteins which contain fluorinated amino acids at specific sites by means of a cell-free translation system. Such engineered proteins are expected to contribute to our understanding of discrete fluorines’ interaction with canonical amino acids in a native protein environment and to enable the design of fluorinated proteins with arbitrary desired properties

    Building a network of ADPKD reference centres across Europe: the EuroCYST initiative

    Full text link
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic inherited kidney disease, affecting an estimated 600 000 individuals in Europe. The disease is characterized by age-dependent development of a multiple cysts in the kidneys, ultimately leading to end-stage renal failure and the need of renal replacement therapy in the majority of patients, typically by the fifth or sixth decade of life. The variable disease course, even within the same family, remains largely unexplained. Similarly, assessing disease severity and prognosis in an individual with ADPKD remains difficult. Epidemiological studies are limited due to the fragmentation of ADPKD research in Europe. METHODS: The EuroCYST initiative aims: (i) to harmonize and develop common standards for ADPKD research by starting a collaborative effort to build a network of ADPKD reference centres across Europe and (ii) to establish a multicentric observational cohort of ADPKD patients. This cohort will be used to study factors influencing the rate of disease progression, disease modifiers, disease stage-specific morbidity and mortality, health economic issues and to identify predictive disease progression markers. Overall, 1100 patients will be enrolled in 14 study sites across Europe. Patients will be prospectively followed for at least 3 years. Eligible patients will not have participated in a pharmaceutical clinical trial 1 year before enrollment, have clinically proven ADPKD, an estimated glomerular filtration rate (eGFR) of 30 mL/min/1.73 m(2) and above, and be able to provide written informed consent. The baseline visit will include a physical examination and collection of blood, urine and DNA for biomarker and genetic studies. In addition, all participants will be asked to complete questionnaires detailing self-reported health status, quality of life, socioeconomic status, health-care use and reproductive planning. All subjects will undergo annual follow-up. A magnetic resonance imaging (MRI) scan will be carried out at baseline, and patients are encouraged to undergo a second MRI at 3-year follow-up for qualitative and quantitative kidney and liver assessments. CONCLUSIONS: The ADPKD reference centre network across Europe and the observational cohort study will enable European ADPKD researchers to gain insights into the natural history, heterogeneity and associated complications of the disease as well as how it affects the lives of patients across Europe

    Building a network of ADPKD reference centres across Europe: the EuroCYST initiative

    No full text
    Background. Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic inherited kidney disease, affecting an estimated 600 000 individuals in Europe. The disease is characterized by age-dependent development of a multiple cysts in the kidneys, ultimately leading to end-stage renal failure and the need of renal replacement therapy in the majority of patients, typically by the fifth or sixth decade of life. The variable disease course, even within the same family, remains largely unexplained. Similarly, assessing disease severity and prognosis in an individual with ADPKD remains difficult. Epidemiological studies are limited due to the fragmentation of ADPKD research in Europe

    Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcÎłRIIB and dectin-1 [Letter]

    No full text
    Complement is an ancient danger-sensing system that contributes to host defense, immune surveillance and homeostasis1. C5a and its G protein–coupled receptor mediate many of the proinflammatory properties of complement2. Despite the key role of C5a in allergic asthma3, autoimmune arthritis4, sepsis5 and cancer6, knowledge about its regulation is limited. Here we demonstrate that IgG1 immune complexes (ICs), the inhibitory IgG receptor FcγRIIB and the C-type lectin–like receptor dectin-1 suppress C5a receptor (C5aR) functions. IgG1 ICs promote the association of FcγRIIB with dectin-1, resulting in phosphorylation of Src homology 2 domain–containing inositol phosphatase (SHIP) downstream of FcγRIIB and spleen tyrosine kinase downstream of dectin-1. This pathway blocks C5aR-mediated ERK1/2 phosphorylation, C5a effector functions in vitro and C5a-dependent inflammatory responses in vivo, including peritonitis and skin blisters in experimental epidermolysis bullosa acquisita. Notably, high galactosylation of IgG N-glycans is crucial for this inhibitory property of IgG1 ICs, as it promotes the association between FcγRIIB and dectin-1. Thus, galactosylated IgG1 and FcγRIIB exert anti-inflammatory properties beyond their impact on activating FcγRs

    Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs

    No full text
    Background: Under inflammatory conditions, T cell-dependent (TD) protein antigens induce proinflammatory T-and B-cell responses. In contrast, tolerance induction by TD antigens without costimulation triggers the development of regulatory T cells. Under both conditions, IgG antibodies are generated, but whether they have different immunoregulatory functions remains elusive. Objective: It was shown recently that proinflammatory or anti-inflammatory effector functions of IgG molecules are determined by different Fc N-linked glycosylation patterns. We sought to examine the Fc glycosylation and anti-inflammatory quality of IgG molecules formed on TD tolerance induction. Methods: We administered chicken ovalbumin (OVA) with or without costimulus to mice and analyzed OVA-reactive IgG Fc glycosylation. The anti-inflammatory function of differentially glycosylated anti-OVA IgGs was further investigated in studies with dendritic cell cultures and in an in vivo model of allergic airway disease. Additionally, we analyzed the Fc glycosylation pattern of birch pollen-reactive serum IgGs after successful allergen-specific immunotherapy in patients. Results: Stimulation with TD antigens under inflammatory conditions induces plasma cells expressing low levels of alpha 2,6-sialyltransferase and producing desialylated IgGs. In contrast, plasma cells induced on tolerance induction did not downregulate alpha 2,6-sialyltransferase expression and secreted immunosuppressive sialylated IgGs that were sufficient to block antigen-specific T- and B-cell responses, dendritic cell maturation, and allergic airway inflammation. Importantly, successful specific immunotherapy in allergic patients also induced sialylated allergen-specific IgGs. Conclusions: Our data show a novel antigen-specific immunoregulatory mechanism mediated by anti-inflammatory sialylated IgGs that are formed on TD tolerance induction. These findings might help to develop novel antigen-specific therapies for the treatment of allergy and autoimmunity. (J Allergy Clin Immunol 2012;129:1647-55.
    corecore