16 research outputs found

    Mapping and Functional Characterisation of a CTCF-Dependent Insulator Element at the 3′ Border of the Murine Scl Transcriptional Domain

    Get PDF
    The Scl gene encodes a transcription factor essential for haematopoietic development. Scl transcription is regulated by a panel of cis-elements spread over 55 kb with the most distal 3′ element being located downstream of the neighbouring gene Map17, which is co-regulated with Scl in haematopoietic cells. The Scl/Map17 domain is flanked upstream by the ubiquitously expressed Sil gene and downstream by a cluster of Cyp genes active in liver, but the mechanisms responsible for delineating the domain boundaries remain unclear. Here we report identification of a DNaseI hypersensitive site at the 3′ end of the Scl/Map17 domain and 45 kb downstream of the Scl transcription start site. This element is located at the boundary of active and inactive chromatin, does not function as a classical tissue-specific enhancer, binds CTCF and is both necessary and sufficient for insulator function in haematopoietic cells in vitro. Moreover, in a transgenic reporter assay, tissue-specific expression of the Scl promoter in brain was increased by incorporation of 350 bp flanking fragments from the +45 element. Our data suggests that the +45 region functions as a boundary element that separates the Scl/Map17 and Cyp transcriptional domains, and raise the possibility that this element may be useful for improving tissue-specific expression of transgenic constructs

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer

    A novel interaction between the proto-oncogene Evi1 and histone methyltransferases, SUV39H1 and G9a

    Get PDF
    AbstractThe transcription factor ecotropic viral integration site 1 (Evi1) is associated with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) in patients due to chromosomal aberration of chromosome 3. Here we show that Evi1 interacts with the histone methyltransferase SUV39H1. The interaction requires the N-terminal part of Evi1 and the H3-specific histone methyltransferase domain, SET, of SUV39H1 without Evi1 having an inhibitory effect on SUV39H1 methyltransferase activity. Presence of SUV39H1 enhances Evi1 transcriptional repression in a dose dependent manner. In addition, Evi1 also interacts with another histone methyltransferase, G9a, but not with SET9. Our data establish an epigenetic role of Evi1 in cell transformation by recruiting higher order chromatin remodeling complexes

    Additional file 1: Figures S1–S5. of SETDB1 prevents TET2-dependent activation of IAP retroelements in naïve embryonic stem cells

    No full text
    Figure S1. SETDB1 regulates ERV silencing in naïve ESCs. Figure S2. Removal of TET2 dampens SETDB1-mediated IAP activation in naïve cells. Figure S3. SETDB1-mediated IAP activation is not linked to DNA methylation changes. Figure S4. SETDB1 depletion does not lead to DNA methylation changes. Figure S5. TET2 activity is associated with loss of H4R3me2s at IAPs. (PDF 828 kb

    cis-Regulatory Remodeling of the SCL Locus during Vertebrate Evolutionâ–¿

    No full text
    Development progresses through a sequence of cellular identities which are determined by the activities of networks of transcription factor genes. Alterations in cis-regulatory elements of these genes play a major role in evolutionary change, but little is known about the mechanisms responsible for maintaining conserved patterns of gene expression. We have studied the evolution of cis-regulatory mechanisms controlling the SCL gene, which encodes a key transcriptional regulator of blood, vasculature, and brain development and exhibits conserved function and pattern of expression throughout vertebrate evolution. SCL cis-regulatory elements are conserved between frog and chicken but accrued alterations at an accelerated rate between 310 and 200 million years ago, with subsequent fixation of a new cis-regulatory pattern at the beginning of the mammalian radiation. As a consequence, orthologous elements shared by mammals and lower vertebrates exhibit functional differences and binding site turnover between widely separated cis-regulatory modules. However, the net effect of these alterations is constancy of overall regulatory inputs and of expression pattern. Our data demonstrate remarkable cis-regulatory remodelling across the SCL locus and indicate that stable patterns of expression can mask extensive regulatory change. These insights illuminate our understanding of vertebrate evolution
    corecore