733 research outputs found

    On ANOVA decompositions of kernels and Gaussian random field paths

    Get PDF
    The FANOVA (or "Sobol'-Hoeffding") decomposition of multivariate functions has been used for high-dimensional model representation and global sensitivity analysis. When the objective function f has no simple analytic form and is costly to evaluate, a practical limitation is that computing FANOVA terms may be unaffordable due to numerical integration costs. Several approximate approaches relying on random field models have been proposed to alleviate these costs, where f is substituted by a (kriging) predictor or by conditional simulations. In the present work, we focus on FANOVA decompositions of Gaussian random field sample paths, and we notably introduce an associated kernel decomposition (into 2^{2d} terms) called KANOVA. An interpretation in terms of tensor product projections is obtained, and it is shown that projected kernels control both the sparsity of Gaussian random field sample paths and the dependence structure between FANOVA effects. Applications on simulated data show the relevance of the approach for designing new classes of covariance kernels dedicated to high-dimensional kriging

    The drug development pipeline for glioblastoma: a cross sectional assessment of the FDA orphan drug product designation database

    Get PDF
    BACKGROUND: Glioblastoma (GBM) is the most common malignant brain tumour among adult patients and represents an almost universally fatal disease. Novel therapies for GBM are being developed under the orphan drug legislation and the knowledge on the molecular makeup of this disease has been increasing rapidly. However, the clinical outcomes in GBM patients with currently available therapies are still dismal. An insight into the current drug development pipeline for GBM is therefore of particular interest. OBJECTIVES: To provide a quantitative clinical-regulatory insight into the status of FDA orphan drug designations for compounds intended to treat GBM. METHODS: Quantitative cross-sectional analysis of the U.S. Food and Drug Administration Orphan Drug Product database between 1983 and 2020. STROBE criteria were respected. RESULTS: Four orphan drugs out of 161 (2,4%) orphan drug designations were approved for the treatment for GBM by the FDA between 1983 and 2020. Fourteen orphan drug designations were subsequently withdrawn for unknown reasons. The number of orphan drug designations per year shows a growing trend. In the last decade, the therapeutic mechanism of action of designated compounds intended to treat glioblastoma shifted from cytotoxic drugs (median year of designation 2008) to immunotherapeutic approaches and small molecules (median year of designation 2014 and 2015 respectively) suggesting an increased focus on precision in the therapeutic mechanism of action for compounds the development pipeline. CONCLUSION: Despite the fact that current pharmacological treatment options in GBM are sparse, the drug development pipeline is steadily growing. In particular, the surge of designated immunotherapies detected in the last years raises the hope that elaborate combination possibilities between classical therapeutic backbones (radiotherapy and chemotherapy) and novel, currently experimental therapeutics may help to provide better therapies for this deadly disease in the future

    Assessment of LED fluorescence microscopy for the diagnosis of Plasmodium falciparum infections in Gabon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapid and accurate diagnosis of malaria is central to clinical management and the prevention of drug-overuse, which may lead to resistance development, toxicity and economic losses. So far, light microscopy (LM) of Giemsa-stained thick blood smears is the gold standard. Under optimal conditions the procedure is fast and reliable; nevertheless a gain in speed would be a great advantage. Rapid diagnosis tests are an alternative, although they cost more and give qualitative instead of quantitative results. Light-emitting diode (LED) fluorescence microscopy (ledFM 400 ×, 1000 ×) may offer a reliable and cheap alternative, which can be used at the point of care.</p> <p>Methods</p> <p>LedFM and conventional fluorescence microscopy (uvFM) were compared to LM in 210 samples from patients with history of fever in the last 24 hours admitted to the Albert Schweitzer Hospital in Lambaréné, Gabon.</p> <p>Results</p> <p>Sensitivities were 99.1% for ledFM and 97.0% for uvFM, specificities 90.7% for ledFM 400 × and 92.6% for ledFM 1000 × and uvFM. High agreement was found in Bland-Altman-plot and Kappa coefficient (ledFM 1000 ×: 0.914, ledFM 400 × and uvFM: 0.895). The time to diagnosis for both FM methods was shorter compared to LM (LM: 43 min, uvFM: 16 min, ledFM 1000 ×: 14 min, ledFM 400 ×: 10 min).</p> <p>Conclusion</p> <p>ledFM is a reliable, accurate, fast and inexpensive tool for daily routine malaria diagnosis and may be used as a point of care diagnostic tool.</p

    EPIC 201585823, a rare triple-mode RR Lyrae star discovered in K2 mission data

    Get PDF
    We have discovered a new, rare triple-mode RR Lyr star, EPIC 201585823, in the Kepler K2 mission Campaign 1 data. This star pulsates primarily in the fundamental and first-overtone radial modes, and, in addition, a third non-radial mode. The ratio of the period of the non-radial mode to that of the first-overtone radial mode, 0.616 285, is remarkably similar to that seen in 11 other triple-mode RR Lyr stars, and in 260 RRc stars observed in the Galactic bulge. This systematic character promises new constraints on RR Lyr star models. We detected subharmonics of the non-radial mode frequency, which are a signature of period doubling of this oscillation; we note that this phenomenon is ubiquitous in RRc and RRd stars observed from space, and from ground with sufficient precision. The non-radial mode and subharmonic frequencies are not constant in frequency or in amplitude. The amplitude spectrum of EPIC 201585823 is dominated by many combination frequencies among the three interacting pulsation mode frequencies. Inspection of the phase relationships of the combination frequencies in a phasor plot explains the ‘upward’ shape of the light curve. We also found that raw data with custom masks encompassing all pixels with significant signal for the star, but without correction for pointing changes, is best for frequency analysis of this star, and, by implication, other RR Lyr stars observed by the K2 mission. We compare several pipeline reductions of the K2 mission data for this star

    Severe acute hepatitis and acute liver failure of unknown origin in children:a questionnaire-based study within 34 paediatric liver centres in 22 European countries and Israel, April 2022

    Get PDF
    To detect potential concern about severe acute hepatitis in children, we conducted a survey among 50 ERN RARE-LIVER centres. By 26 April 2022, 34 centres, including 25 transplant centres, reported an estimated median of 3-5, 0-2 and 3-5 cases in 2021, 2020 and 2019 and a mean of 2 (range: 0-8) cases between January and April 2022 (mean in 10 large liver transplant centres: 3). Twelve centres reported suspicion of an increase, but no rise. Following a report by the United Kingdom (UK) on 5 April 2022 on the occurrence of cases of severe acute hepatitis in children aged 16 years or under, the World Health Organization (WHO) raised concerns about the possibility of an epidemic [1,2]. By 21 April, 169 possible or confirmed cases were reported fulfilling the WHO case definition [3]. The cause of the hepatitis is unknown but a link to a virus infection has been suggested due to the epidemiological pattern of cases [4,5]. The hepatitis can progress to paediatric acute liver failure (pALF) necessitating urgent liver transplantation to avoid multi-organ failure [6]. We intended to assess whether a rise in incidence of severe acute hepatitis or pALF could be observed between 1 January and 26 April 2022 in comparison to previous years, within the European Reference Network on Hepatological Diseases (ERN RARE-LIVER) [7]

    Hydrogel encapsulation of genome-engineered stem cells for long-term self-regulating anti-cytokine therapy

    Get PDF
    Biologic therapies have revolutionized treatment options for rheumatoid arthritis (RA) but their continuous administration at high doses may lead to adverse events. Thus, the development of improved drug delivery systems that can sense and respond commensurately to disease flares represents an unmet medical need. Toward this end, we generated induced pluripotent stem cells (iPSCs) that express interleukin-1 receptor antagonist (IL-1Ra, an inhibitor of IL-1) in a feedback-controlled manner driven by the macrophage chemoattractant protein-1 (Ccl2) promoter. Cells were seeded in agarose hydrogel constructs made from 3D printed molds that can be injected subcutaneously via a blunt needle, thus simplifying implantation of the constructs, and the translational potential. We demonstrated that the subcutaneously injected agarose hydrogels containing genome-edited Ccl2-IL1Ra iPSCs showed significant therapeutic efficacy in the K/BxN model of inflammatory arthritis, with nearly complete abolishment of disease severity in the front paws. These implants also exhibited improved implant longevity as compared to the previous studies using 3D woven scaffolds, which require surgical implantation. This minimally invasive cell-based drug delivery strategy may be adapted for the treatment of other autoimmune or chronic diseases, potentially accelerating translation to the clinic

    Etiology and Outcome of Adult and Pediatric Acute Liver Failure in Europe

    Get PDF
    Acute liver failure (ALF) is rare but life-threatening. Common causes include intoxications, infections, and metabolic disorders. Indeterminate etiology is still frequent. No systematic data on incidence, causes, and outcome of ALF across Europe are available. Via an online survey we reached out to European Reference Network Centers on rare liver diseases. Numbers and etiology of ALF cases during 2020 were retrieved and diagnostic and treatment availabilities assessed. In total, 455 cases (306 adult, 149 pediatric) were reported from 36 centers from 20 countries. Intoxication was the most common cause in adult and pediatric care. The number of cases with indeterminate etiology is low. Diagnostic tools and specific treatment options are broadly available within this network. This is the first approach to report on etiology and outcome of ALF in the pediatric and adult population in Europe. High diagnostic yield and standard of care reflects the expert status of involved centers.</p

    Genotypic diversity and phenotypic spectrum of infantile liver failure syndrome type 1 due to variants inLARS1

    Get PDF
    Purpose: Biallelic variants in LARS1, coding for the cytosolic leucyl-tRNA synthetase, cause infantile liver failure syndrome 1 (ILFS1). Since its description in 2012, there has been no systematic analysis of the clinical spectrum and genetic findings. Methods: Individuals with biallelic variants in LARS1 were included through an international, multicenter collaboration including novel and previously published patients. Clinical variables were analyzed and functional studies were performed in patient-derived fibroblasts. Results: Twenty-five individuals from 15 families were ascertained including 12 novel patients with eight previously unreported variants. The most prominent clinical findings are recurrent elevation of liver transaminases up to liver failure and encephalopathic episodes, both triggered by febrile illness. Magnetic resonance image (MRI) changes during an encephalopathic episode can be consistent with metabolic stroke. Furthermore, growth retardation, microcytic anemia, neurodevelopmental delay, muscular hypotonia, and infection-related seizures are prevalent. Aminoacylation activity is significantly decreased in all patient cells studied upon temperature elevation in vitro. Conclusion: ILFS1 is characterized by recurrent elevation of liver transaminases up to liver failure in conjunction with abnormalities of growth, blood, nervous system, and musculature. Encephalopathic episodes with seizures can occur independently from liver crises and may present with metabolic stroke

    Genetic landscape of pediatric acute liver failure of indeterminate origin.

    Get PDF
    BACKGROUND AIMS Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, main causes are viral infections (12-16%) and inherited metabolic diseases (14-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. METHODS With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF (RALF). WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (46%), and in children with RALF (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8) and DGUOK (n=7) were the most frequent findings. When categorizing, most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%) and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplants. CONCLUSION This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics
    corecore