7,700 research outputs found

    Universal correlations along the BEC-BCS crossover

    Full text link
    We show that the long-distance behavior of the two-body density correlation functions and the Cooper-pair probability density of a balanced mixture of a two-component Fermi gas at T=0T = 0, is universal along the BEC-BCS crossover. Our result is demonstrated by numerically solving the mean-field BCS model for different finite short-range atomic interaction potentials. We find an analytic expression for the correlation length in terms of the chemical potential and the energy gap at zero momentum.Comment: 6 pages, 3 figure

    Near-field spectroscopy of silicon dioxide thin films

    Full text link
    We analyze the results of scanning near-field infrared spectroscopy performed on thin films of a-SiO2 on Si substrate. The measured near-field signal exhibits surface-phonon resonances whose strength has a strong thickness dependence in the range from 2 to 300 {nm}. These observations are compared with calculations in which the tip of the near-field infrared spectrometer is modeled either as a point dipole or an elongated spheroid. The latter model accounts for the antenna effect of the tip and gives a better agreement with the experiment. Possible applications of the near-field technique for depth profiling of layered nanostructures are discussed.Comment: 8 pages, 6 figure

    Phenomenological Determination of the Beauty Meson Decay Parameter fBf_B and the CP-Violating Angle δ\delta

    Get PDF
    We fit the CKM{\cal CKM}-matrix to all recent data with the following free parameters: three mixing angles, the CP-violating angle δ\delta in the Maiani parametrisation, the top quark mass mtm_t, and the product f_B{\cal B}_{\B}^{1/2}, where fBf_B is the BB-meson decay parameter and {\cal B}_{\B} is the bag parameter. Our fits span a contiguous region in the (f_B{\cal B}_{\B}^{1/2},\ \cos\delta)--plane, limited by 0.117\lsim f_B{\cal B}_{\B}^{1/2}/{\rm GeV}\lsim 0.231 and --0.95 \lsim cosδ\cos\delta \lsim 0.70. The parameters f_B{\cal B}_{\B}^{1/2} and cosδ\cos\delta are strongly positively correlated.Comment: 9 pages + 1 figure available upon request, HU-TFT-94-3

    Sensitivity analysis and reduction of a dynamic model of a bioproduction of fructo-oligosaccharides

    Get PDF
    Starting from a relatively detailed model of a bioprocess producing fructo-oligosaccharides, a set of experimental data collected in batch and fed-batch experiments is exploited to estimate the unknown model parameters. The original model includes the growth of the fungus Aureobasidium pullulans which produces the enzymes responsible for the hydrolysis and transfructosylation reactions, and as such contains 25 kinetic parameters and 16 pseudo-stoichiometric coefficients, which are not uniquely identifiable with the data at hand. The aim of this study is, therefore, to show how sensitivity analysis and quantitative indicators based on the Fisher information matrix can be used to reduce the detailed model to a practically identifiable model. Parametric sensitivity analysis can indeed be used to progressively simplify the model to a representation involving 15 kinetic parameters and 8 pseudo-stoichiometric coefficients. The reduced model provides satisfactory prediction and can be convincingly cross validated.The authors thank the financial support from the F.R.S.-FNRS, the Belgium National Fund for the Scientific Research (Research Project 24643.08). C. Nobre thanks the Fundação para a Ciência e Tecnologia for the strategic funding of UID/BIO/04469 /2013 unit.info:eu-repo/semantics/publishedVersio

    Search for Narrow Diphoton Resonances and for gamma-gamma+W/Z Signatures in p\bar p Collisions at sqrt(s)=1.8 TeV

    Get PDF
    We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 pb^{-1} of p\bar p collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both p\bar p\to\gamma\gamma + X and p\bar p\to\gamma\gamma + W/Z. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale sqrt{F} in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for H\to\gamma\gamma. Finally, we set a lower limit on the mass of a `bosophilic' Higgs boson (e.g. one which couples only to \gamma, W, and Z$ bosons with standard model couplings) of 82 GeV/c^2 at 95% confidence level.Comment: 30 pages, 11 figure

    Inclusive Search for Anomalous Production of High-pT Like-Sign Lepton Pairs in Proton-Antiproton Collisions at sqrt{s}=1.8 TeV

    Get PDF
    We report on a search for anomalous production of events with at least two charged, isolated, like-sign leptons with pT > 11 GeV/c using a 107 pb^-1 sample of 1.8 TeV ppbar collisions collected by the CDF detector. We define a signal region containing low background from Standard Model processes. To avoid bias, we fix the final cuts before examining the event yield in the signal region using control regions to test the Monte Carlo predictions. We observe no events in the signal region, consistent with an expectation of 0.63^(+0.84)_(-0.07) events. We present 95% confidence level limits on new physics processes in both a signature-based context as well as within a representative minimal supergravity (tanbeta = 3) model.Comment: 15 pages, 4 figures. Minor textual changes, cosmetic improvements to figures and updated and expanded reference

    Gate-tuning of graphene plasmons revealed by infrared nano-imaging

    Full text link
    Surface plasmons are collective oscillations of electrons in metals or semiconductors enabling confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabrication, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium-graphene-is amenable to convenient tuning of its electronic and optical properties with gate voltage. Through infrared nano-imaging we explicitly show that common graphene/SiO2/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nm at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and wavelength of these plasmons by gate voltage. We investigated losses in graphene using plasmon interferometry: by exploring real space profiles of plasmon standing waves formed between the tip of our nano-probe and edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merits of our tunable graphene devices surpass that of common metal-based structures.Comment: 15 pages, 3 figure
    corecore