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Abstract
Starting from a relatively detailed model of a bioprocess producing fructo-oligosaccharides, a set of experimental data 
collected in batch and fed-batch experiments is exploited to estimate the unknown model parameters. The original model 
includes the growth of the fungus Aureobasidium pullulans which produces the enzymes responsible for the hydrolysis and 
transfructosylation reactions, and as such contains 25 kinetic parameters and 16 pseudo-stoichiometric coefficients, which 
are not uniquely identifiable with the data at hand. The aim of this study is, therefore, to show how sensitivity analysis and 
quantitative indicators based on the Fisher information matrix can be used to reduce the detailed model to a practically 
identifiable model. Parametric sensitivity analysis can indeed be used to progressively simplify the model to a representation 
involving 15 kinetic parameters and 8 pseudo-stoichiometric coefficients. The reduced model provides satisfactory prediction 
and can be convincingly cross validated.
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List of symbols
GF  Sucrose concentration ( g L−1)
GF2  1-Kestose concentration ( g L−1)
GF3  Nystose concentration ( g L−1)
GF4  Fructofuranosylnystose concentration 

( g L−1)
F  Fructose concentration ( g L−1)
G  Glucose concentration ( g L−1)
X  Biomass concentration ( g L−1)
ri, i = 1,… , 4  Hydrolysis reaction rates ( g L−1 h−1)
ri, i = 5, 6, 7  Transfructosylation reaction rates 

( g L−1 h−1)
ri, i = 8, 9  Biomass production reaction rates 

( g L−1 h−1)

ki, i = 1,… , 14  Pseudo-stoichiometric coefficients
YF  Biomass yield coefficient from fructose
YG  Biomass yield coefficient from glucose
VmhGF  Maximum hydrolysis rate for sucrose 

( g L−1 h−1)
KmhGF  Michaelis–Menten constant for sucrose 

( g L−1)
VmhGFi  Maximum hydrolysis rate for GFi 

( g L−1 h−1)
KmhGFi  Michaelis–Menten constant for GFi 

( g L−1)
KihGFi  Substrate inhibition constant for GFi 

( g L−1)
VmTGF  Maximum transfructosylation rate for 

sucrose ( g L−1 h−1)
Kmst  Michaelis–Menten constant for sucrose 

( g L−1)
Ksts  Substrate inhibition constant for sucrose 

( g L−1)
Kgst  Competitive inhibition constant for 

glucose
VmTGFi

  Maximum transfructosylation rate for 
GFi ( g L

−1h−1)
KmtGFi  Michaelis–Menten constant for GFi 

( g L−1)
KitGFi  Competitive inhibition constant for GFi
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�mF  Maximum specific growth rate for fruc-
tose ( h−1)

KF  Monod constant of fructose ( g L−1)
�mG  Maximum specific growth rate for glu-

cose ( h−1)
KG  Monod constant of glucose ( g L−1)
V  Culture volume (L)

Introduction

Human health and well-being are dependent on the met-
abolic activity of the bacterial community present in the 
gastrointestinal tract. Pre-, pro-, and synbiotics can be used 
to control the intestinal function through modulation of 
microbiota composition and activity [23]. Epidemiological 
and clinical studies indicate that beneficial commensal bac-
teria, known as probiotic bacteria, may be useful to prevent 
cancer and to slow down the progression of tumors [2, 3]. 
Because of their bifidogenic nature and their health-promot-
ing properties, fructo-oligosaccharides (FOS), are classified 
as prebiotics. Functional properties, as well as the techno-
logical potential of FOS, make them attractive in food and 
pharmaceutical applications [1, 15, 20, 21].

The main FOS include 1-kestose ( GF2 ), nystose ( GF3 ), 
and fructofuranosylnystose ( GF4 ). They can be found in 
trace amounts in fruits, vegetables, and honey [12]. Indus-
trially, FOS can be produced from sucrose (GF) by �-fructo-
furanosidase enzymes with transfructosylating and hydro-
lytic activity, provided by fungi, such as Aureobasidium 
pullulans [6, 8, 25, 30]. To improve the production of FOS, 
screening and selection of carriers for immobilization of A. 
pullulans cells were studied in [4]. FOS production yields 
can be affected by sucrose concentration in the medium as 
well as small saccharides, such as glucose (G) and fructose 
(F) that can inhibit the fructosyltransferase enzymes and 
trigger FOS hydrolysis.

The maximization of the productivity of the fermenta-
tive production, as well as the minimization of the small 
monosaccharides in the medium, can be achieved by a tight 
process control. To this end, a dynamic model of the FOS 
production process is needed. However, only few dynamic 
models of FOS production are readily available. In [18], 
the synthesis reactions of FOS by fructosyltransferase are 
considered, while [9] introduces the nystose hydrolysis reac-
tion. A fermentative process based on cultures of A. Pul-
lulans is described in [24], which includes biomass growth, 
and 1-kestose and 1-fructosylfuranosyl nystose hydrolysis 
reactions. However, this model is delicate to identify and 
validate from experimental data, as discussed in [10].

The objective of the present study is to revisit the model 
of [24], and the preliminary identification results of [10], 
to eventually propose a reduced model that would be 

practically identifiable. and to develop a careful parameter 
identification procedure using local sensitivity analysis, the 
Fisher Information Matrix, and subset selection based on 
QR decomposition to reduce the number of parameters to a 
minimum. Parameter identifiability could also be assessed 
using global sensitivity analysis (see for instance, [11, 16, 
19, 28] for overviews). However, as stated in [7], where 
local and global sensitivities are computed for a non-linear 
biological system, local sensitivity analysis is significantly 
easier to perform and provides a handful of information, if 
applied carefully.

The resulting dynamic model involves 8 stoichiometric 
coefficients and 15 kinetic parameters, and can be convinc-
ingly validated. The identification is made possible by the 
collection of informative data from several batch and fed-
batch experiments.

This bottom–up approach has to be distinguished from 
the top–down approach presented in [27], where a dynamic 
model is developed from scratch, starting from the experi-
mental database, and applying principal component analysis 
and parameter estimation to develop a data-driven model. 
Without deflowering the content of this article and the 
present one, it can nevertheless be concluded that the two 
approaches lead to models whose predictive capacity is 
similar. One of our main interests in the present study is to 
proceed along the more classical approach in biology, which 
consists in starting from the accumulated a priori knowl-
edge, and to demonstrate the interest of known but prob-
ably underused techniques such as the QR decomposition 
of information matrices.

The paper is organized as follows. In Sect. “Materials 
and methods”, the experimental setup and the experimen-
tal data collected in batch and fed-batch modes are pre-
sented. The model proposed in [24] is then introduced in 
Sect. “Modeling the fermentative FOS production”. Sec-
tion “Model parameter identification” presents the weight-
ing least squares identification criterion and the quantitative 
indicators of parameter identifiability. Using the available 
experimental data, parameter identification is achieved in 
Sect. “Numerical results” as well as parametric sensitivity 
analysis based on Fisher information. An iterative parameter 
reduction procedure is applied and a FOS model is validated. 
Conclusions are drawn in Sect. “Conclusion”.

Materials and methods

Fermentation for FOS production

An inoculum of A. pullulans was prepared by transfer-
ring 1 mL of spores suspension with 9 × 107 spores mL−1 
to a 500 mL Erlenmeyer flask with 100 mL of medium 
( 100g L−1 sucrose, 0.5g L−1 KCl, 0.35g L−1 K2SO4

 , 0.5g L−1 
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MgSO4.7H2O , 0.01g L−1 FeSO4.7H2O , 5g L−1 NaNO3 and 
4g L−1 KH2PO4 ). The inoculum was grown at 28 ºC and 
150 rpm and transferred after 3 days to a 5 L bioreactor—
BIOSTAT Ⓡ B module (Sartorius, Germany), with a working 
volume of 3 L of culture medium ( 200g L−1 sucrose and the 
same salt concentrations as the ones used in the inoculum). 
Bioreactor fermentations were carried out at 32◦C and 385 
rpm with a fixed pH of 5.5.

Sugar analysis

The sugar analysis was performed according to [5, 22]. A 
HPLC (Jasco) equipped with a refractive index detector 
working at 30 ºC and a Prevail Carbohydrate ES 5u column 
(5 μm , 25 × 0.46 cm length × diameter) (Alltech) were used 
to analyze samples. The mobile phase consisted of a mixture 
of acetonitrile (HPLC Grade, Carlo Erba, France) in pure 
water (70 : 30 v/v) with 0.04% of ammonium hydroxide in 
water (HPLC Grade from Sigma, Germany). Samples were 
eluted at 1 mL  min−1 flow rate at room temperature. Chro-
matograms were further integrated using a Star Workstation 
software (Varian, USA). All the chemical standards used 
were of analytical grade.

Operating conditions and data sampling

Batch cultures imply no bioreactor inlet and oulet flow rates 
and are, therefore, easily achieved in practice. However, the 
experimental data that can be collected in this operating 
mode usually suffers from a lack of information, particularly 
on the half saturation coefficients of the Michaelis–Menten 
laws. Fed-batch operation (where the outlet flow is still nill 
but the inlet flow can be manipulated) is a convenient way 
to overcome this lack of information issue since it allows 
the process to be driven to different substrate concentration 
levels. In our preliminary investigation [10], experimental 
design showed that the volumetric flow rate Qin(t) in the fed-
batch experiments should vary as a combination of ramps 
and exponentials:

with, for instance, � = 0.02 and � = 2 × 10−4 . The transi-
tions times could be defined as t0 = 0 h, t1 = 50 h, t2 = 100 
h, t3 = 130 h, t4 = 160 h and tf = 240 h, so as to explore 
a relatively large operation range and generate informative 
data (see Fig. 1). The maximum volume is fixed at 3.5 L.

The experimental data of batch experiments (B1, B2, 
B3 and B4 of Table 1) and fed-batch experiments (FB1 
and FB2 of Table 1) are shown in Fig. 2 and the following 

(1)Qin(t) =

⎧⎪⎨⎪⎩

0 for t ∈ [t0, t1[∪[t2, t3[∪[t4, tf [,

Q0e
�t for t ∈ [t1, t2[,

Q1 + �t for t ∈ [t3, t4],

ones. These data sets are divided in two partitions: B1, B2, 
FB1, and FB2 are dedicated to the parameter identification 
procedure and the model direct validation while B3 and 
B4 are used for model cross validation.

The measured variables are the concentrations of sucrose 
GF, fructose F, glucose G, 1-kestose GF2 , nystose GF3 , and 
fructofuranosylnystose GF4 . Table 1 describes the experi-
mental field, i.e., the several batch and fed-batch runs which 
differ in the initial condition of GF. Due to its heterogenous 
growth, fungal biomass is unfortunately not measured. This 
aspect is further discussed in Sect. 5. Data were collected 
with a varying measurement sampling time from 2 to 10 h 
during the first phase of sucrose transformation (up to almost 
50 h). Then fewer samples were taken, e.g., every 6–16 h as 
the sucrose converges toward a stationary state. In fed-batch 
experiments, more frequent sampling was achieved (from 1 
to 15 h sampling period) and a time-varying inlet flow rate 
Qin(t) ( L h−1 ) was used. The inlet and initial medium con-
centrations were the same, i.e., GF(0) = GFin.

Modeling of the fermentative FOS 
production

Based on the works of [1, 8, 24], a dynamic model of FOS 
bioproduction can be proposed. The model is based on a 
reaction scheme including enzymatic reactions and biologi-
cal pseudo-reactions describing the yeast-like fungus A. Pul-
lulans growth.

time [h]

Qin[L/h]

Fig. 1  Evolution of the feed flow rate in a fed-batch experiment

Table 1  Initial concentration GF(0) ( gL−1 ) and feed concentration 
GFin ( gL−1)

Batch fermentation B1 B2 B3 B4

GF(0) 206.59 205.94 172.11 212.79
Fed-batch fermentation FB1 FB2
GF(0) = GFin 200.63 102.62
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The enzymatic reactions are divided on the one hand, 
in hydrolysis reactions, representing FOS and sucrose 
degradation:

where GF, G, F, and GFi , i = 2, 3, 4 , denote sucrose, glucose, 
fructose, 1-kestose, nystose, and 1-fructofuranosyl nystose 
concentrations ( gL−1 ), respectively, ri , i = 1,… , 4 , repre-
sent the hydrolysis rate ( g L−1 h−1 ), and ki , i = 1,… , 8 the 
pseudo-stoichiometric coefficients.

On the other hand, the transfructosylation reactions, 
which describe FOS synthesis, are given by:

Biomass growth is described by:

where X is the biomass concentration ( g L−1 ), and YG , YF 
represent the biomass yield coefficient from glucose and 
fructose, respectively.

Applying mass balancing, the following ordinary differ-
ential equation system is obtained:

where GFin represents the inlet sucrose concentration, Qin(t) 
and Qout(t) the volumetric inlet and outlet flow rates, V(t) the 
liquid volume inside the reactor, and D(t) = Qin(t)

V(t)
 the dilution 

rate. Note that in fed-batch operation Qout(t) = 0 , but a small 
outlet flow rate can sometimes be considered to take the 
sample collection into account (small volumes of liquid are 
sampled for off-line analysis and measurement purposes).

GF
r1

�����������������������������→ k1G + k2F

GF2
r2

�����������������������������→ k3GF + k4F

GF3
r3

�����������������������������→ k5GF2 + k6F

GF4
r4

�����������������������������→ k7GF3 + k8F

2GF
r5

�����������������������������→ k9GF2 + k10G

2GF2
r6

�����������������������������→ k11GF3 + k12GF

2GF3
r7

�����������������������������→ k13GF4 + k14GF2.

YGG
r8

�����������������������������→ X

YFF
r9

�����������������������������→ X,

(2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ĠF = D(GFin − GF) − r1 + k3r2 − r5 +
k12

2
r6

̇GF2 = − D × GF2 − r2 + k5r3 +
k9

2
r5 − r6 +

k14

2
r7

̇GF3 = − D × GF3 − r3 + k7r4 +
k11

2
r6 − r7

̇GF4 = − D × GF4 − r4 +
k13

2
r7

Ḟ = − D × F + k2r1 + k4r2 + k6r3 + k8r4 − YFr9

Ġ = − D × G + k1r1 +
k10

2
r5 − YGr8

Ẋ = − D.X + r8 + r9
V̇ = Qin − Qout,

For convenience, the previous equations can be cast into a 
matrix–vector representation, introducing the pseudo-stoichi-
ometric matrix K defined by:

as well as the state, rate, and transport vectors:

With this notation, the mass balance model (2) can be rewrit-
ten as:

A candidate structure for the sucrose hydrolysis reaction rate 
is the following Michaelis–Menten law [8, 24]:

where VmhGF represents the maximum hydrolysis rate 
( g L−1 h−1 ) and KmhGF is the Michaelis–Menten half-satu-
ration constant ( g L−1).

The FOS hydrolysis rates are given by the modified Michae-
lis–Menten laws describing substrate inhibition

where VmhGFi represents the maximum hydrolysis rate 
( g L−1 h−1 ), KmhGFi the Michaelis–Menten constant ( g L−1 ), 
and KihGFi is the substrate inhibition constant ( g L−1).

The sucrose transfructosylation kinetic rate is given by a 
modified Michaelis

–Menten law describing the substrate inhibition and com-
petitive glucose inhibition

(3)

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 k3 0 0 − 1
k12

2
0 0 0

0 − 1 k5 0
k9

2
− 1

k14

2
0 0

0 0 − 1 k7 0
k11

2
− 1 0 0

0 0 0 − 1 0 0
k13

2
0 0

k2 k4 k6 k8 0 0 0 − YF 0

k1 0 0 0
k10

2
0 0 0 − YG

0 0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)�T (t) =
[
�1, �2,… , �7

]
=
[
GF,GF2, GF3, GF4, F, G,X

]
,

(5)
rT
(
�

)
=
[
r1, r2,… , r9

]
, �T (t) =

[
D(t)GFin, 0,… , 0

]
.

(6)

{
�̇�(t) = Kr

(
𝜉

)
− D(t)𝜉 +�(t)

V̇(t) = Qin − Qout.

(7)r1 =
VmhGFGF

KmhGF + GF
,

(8)ri =
VmhGFiGFi

KmhGFi + GFi +
GF2

i

KihGFi

, i = 2, 3, 4,

(9)r5 =
VmTGFGF

Kmst + GF +
GF2

Ksts
+

G

Kgst

,
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where VmTGF is the maximum transfructosylation rate 
( g L−1 h−1 ), Kmst the Michaelis–Menten constant ( g L−1 ), 
Ksts the substrate inhibition constant ( g L−1 ), and Kgst is the 
competitive inhibition constant ( g L−1 ) for glucose.

The modified Michaelis–Menten laws with competitive 
glucose inhibition for 1-kestose and nystose are given by:

where VmTGFi
 is the maximum transfructosylation rate 

( g L−1 h−1 ), KmtGFi the Michaelis–Menten constant ( g L−1 ), 
and KitGFi is the competitive inhibition constant ( g L−1 ) for 
glucose.

The Monod laws are given by:

where Sj (j = 8, 9) are the fructose and glucose concentra-
tions ( g L−1 ), respectively, �mj the maximum specific growth 
rate, and KSj

 is the half-saturation constant ( g L−1).
The resulting model contains 16 pseudo-stoichiometric 

coefficients and 25 kinetic parameters. These parameters 
have to be calibrated to fit actual experimental observa-
tions. Since fungi grow in a heterogeneous form, it is diffi-
cult to measure biomass and in the following, it is, therefore, 
assumed that this information is not available.

Model parameter identification

Weighted least squares

The parameter set � , i.e., 25 kinetic parameters, 16 pseudo-
stoichiometric coefficients and possibly the initial concentra-
tions (initial conditions of the mass balance equations) are 
identified based on the available data sets (batch and fed-
batch experiments) using the parameter values of [22] as 
initial guesses (see Table 3). The identification problem is 
formulated as the minimization of a weighted least squares 
(WLS) criterion measuring the distance between experimen-
tal measurements, represented by the vector yexp

j
 , and model 

prediction, represented by the vector ysim
j

:

where

(10)rj =
VmTGFi

GFi

KmtGFi + GFi +
G

KitGFi

j = 6, 7; i = 2, 3,

(11)rj =
�mjSjX

Sj + KSj

j = 8, 9

(12)

J
(
�
−

)
=

Nexp∑
j=1

Ntj∑
i=1

[
y
−

exp

j

(
tij
)
− y

−

sim

j

(
tij;�−

)]T
W−1

j

[
y
−

exp

j

(
tij
)
− y

−

sim

j

(
tij;�−

)]

� =

[
�T
r

�T
K

�T
1
(0)⋯ �T

Nexp

(0)

]
;

�
r
 is the vector of kinetic parameters 

(
dim

(
�
r

)
= 25

)
 , �

K
 is 

the vector of stoichiometric parameters 
(
dim

(
�
K

)
= 16

)
 , 

�
j
(0) , j = 1,… ,Nexp , are the initial conditions of the jth 

experiment, tij denotes the ith sampling time of the jth exper-
iment, Nexp denotes the number of experiments, Nyj

 the num-
ber of measured states during the jth experiment and Ntj 
represents the number of samples taken during the jth exper-
iment. A scaling matrix

is used to normalize the distances calculated in (12) with 
respect to the magnitude of each signal.

The Nelder–Mead method as implemented in the MAT-
LAB function fminsearchbnd is used to minimize the WLS 
criterion. This version of the algorithm allows setting bounds 
restricting the search space to positive parameters and ini-
tial concentrations. Typically, the algorithm is called sev-
eral times in a row, with re-initialization with the previously 
found optimum. These successive calls improve the perfor-
mance of the Nelder–Mead method and allow a better con-
vergence toward the sought minimum (see for instance [32]).

The optimization runs imply a large number of simula-
tions of the model ordinary differential equations and the 
MATLAB solver ode23tb is selected to enhance the simula-
tion speed and accuracy.

A posterior estimate of the measurement error variance 
of the jth experiment �̂�2

j
 can be obtained by:

where Np = dim
(
�
r

)
+ dim

(
�
K

)
 and the WLS estimator is

Parameter sensitivity analysis

Let S�
(
t;�

)
 denote the local sensitivity matrix of the state 

vector � to the parameter � defined by

Under the assumption of Gaussian white noise, the Fisher 
Information Matrix is determined by the following equation 
[29]

Wj = diag

(
max
1≤i≤Ntj

(
y
exp

j1

(
tij
))2

,… , max
1≤i≤Ntj

(
y
exp

jNyj

(
tij
))2

)

�̂�2
j
=

Jj
(
�̂�
)

Nyj
Ntj − Np

, j = 1,… ,Nexp,

�̂� = argmin
𝜃

J
(
𝜃
)
.

S�
(
t;�

)
=

��
(
t;�

)

��

FIM
(
𝜃, �̂�

)
=

Nexp∑
j=1

Ntj∑
i=1

ST
𝜃

(
tij;𝜃

)
�̂�−1

j
S𝜃
(
tij;𝜃

)
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where �̂�j is the a posteriori covariance matrix of the meas-
urement errors of experiment j, calculated as:

The inverse of the FIM provides an optimistic estimate of the 
parameter error covariance matrix (Cramer–Rao bound) [29]

 The main limitation of the FIM is that it is based on a 
model linearization. The propagation of so-called sigma 
points through the non-linear model usually allows a bet-
ter estimation of the covariance matrix [26]. Alternatively, 
Monte Carlo simulation and the bootstrap method [17] allow 
the consideration of more general error distributions (non-
Gaussian, non-symmetric, etc). FIM is, however, a simple 
and practical tool that we will exploit in the sequel of this 
study.

The standard deviation �k of the parameter estimate �̂�k 
can be obtained from the square root of the kth diagonal 
element of C�

It is possible to estimate the confidence intervals for a 
given confidence level and, in this work, a 95% confidence 
level (under the assumption of a Gaussian distribution) is 
considered:

Alternatively, the variation coefficients of the estimated 
parameters can also be considered (i.e., the standard devia-
tion �k normalized by the respective estimated parameter 
value �̂�k ). The correlation matrix, which is generically 
defined by the term as:

can help to explain parameter inter-dependency. However, 
high parameter correlation is not a rejection criterion since 
it does not necessarily induce over-parametrization.

A frequent problem in identification studies is that the 
FIM can be ill-conditioned due to a lack of informative 
experimental data or an over-parametrization of the model. 
To assess the non-singularity of the FIM, the LAPACK 
reciprocal condition estimator (which is given by the method 
rcond in MATLAB) should at least satisfy the following 
[31]:

(13)�̂�j = �̂�2
j
Wj

(14)C𝜃 ≻ FIM −1
(
�̂�, �̂�

)
.

�k =
√

C�
kk
, k = 1,… ,Np

(15)
[
�̂�k−2𝜎k, �̂�k+2𝜎k

]
, k = 1,… ,Np.

(16)�ij =

√√√√ C�
ij

C�
ii
C�

jj

, i, j = 1,… ,Np

(17)rcond(FIM) > 10𝜀,

where � is the floating point relative accuracy.
To investigate singularity issues, a deeper study of the sen-

sitivities is required to detect the parameters which are pos-
sibly linearly dependent.

This study should be based on the normalized sensitivities 
with respect to the L outputs and P parameters:

and a matrix summarizing the sensitivity information can 
be constructed

A first simple quantitative indicator consists of calculat-
ing the L2 norm of each column of S(�, t) and classifying 
the parameters from the most sensitive to the less sensitive 
(according to the norm criterion). This indicator is useful, 
but not sufficient as it does not give any information on the 
possible dependencies between the parameters.

A second quantitative indicator is obtained by calculating 
the numerical rank of the matrix STS . If the singular values 
are �1 ≥ �2 ≥ ⋯ ≥ �n ≥ 0 , the �−numerical rank could be 
defined as

Usually (when deciding whether or not a given matrix is 
numerically rank-deficient or not), � ≈ u�1 , where u is the 
square root of the machine precision epsilon. If the numeri-
cal rank r is smaller than the number of parameters to esti-
mate, this indicates that parameter dependencies do exist. 
The full matrix cannot be used, and a reduced set of r param-
eters should be considered.

A third tool, called subset selection can be used at this 
stage. There exist several powerful algorithms, but we restrict 
ourselves to QR decomposition [13] to give a ranking of the 
parameter dependencies. Indeed, the QR decomposition algo-
rithm allows, following the introduction of a specific permu-
tation matrix P, to order the parameters from least to most 
linearly independent following:

(18)Si,k(�, t) =
�k

yi

�yi

��k
(t)

(19)S(�, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1,1(�, t1,1) ⋯ S1,P(�, t1,1)

S1,1(�, t2,1) ⋯ S1,P(�, t2,1)

⋮

S1,1(�, tNt1,1) ⋯ S1,P(�, tNt1,1)

S1,1(�, t1,2) ⋯ S1,P(�, t1,2)

⋮

S1,1(�, tNtNexp ,Nexp
) ⋯ S1,P(�, tNtNexp ,Nexp

)

S2,1(�, t1,1) ⋯ S2,P(�, t1,1)

⋮ ⋮

SL,1(�, tNtexp,Nexp
) ⋯ SL,P(�, tNtNexp ,Nexp

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)r� = min
{
r ∶ �r ≤ �

}
.

(21)STSP = QR
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where:

In practice, this operation can be easily implemented in 
MATLAB using the function [Q,R,P] = qr(STS).

Numerical results

In [10], a preliminary study of the identification of model 
(2) is proposed, mostly based on simulation data, as well 
as some experimental data in batch cultures. The motiva-
tion behind the current study is to revisit the identification 
problem using the systematic tools presented in the previ-
ous section and additional experimental data sets. Indeed, 
the simulation study reveals that a few batch experiments 
are not sufficient to estimate all the model parameters. The 
additional experiments, which are carried out in fed-batch 
mode, will therefore provide part of the missing information, 
while the sensitivity analysis and subset selection will help 
in reducing the model parametrization.

Note the following facts:

– In practice, not only the 25 kinetic parameters have to be 
considered as in [10, 22], but also the 16 pseudo-stoichi-
ometric coefficients and possibly the initial concentra-
tions which are measured and are, therefore, uncertain. 
This leads to an identification problem with 41 (48 with 
the initial conditions) parameters for one batch culture, 
and up to 69 parameters for a combination of 2 experi-
ments in batch and 2 in fed-batch.

To illustrate the procedure in a systematic way, the data from 
only one batch culture (fermentation B1) is considered first 
for parameter identification of model (2) where the initial 
condition of sucrose concentration is provided in Table 1. 
The direct validation results are shown in Figs. 2 and 3, and 
are quite satisfactory. However, the FIM is ill-conditioned 
with rcond(FIM) = 3 × 10−53 , that is, condition (17) is not 
satisfied and rank(FIM) = 35 while dim ( FIM ) = 41 (see 

(22)PT =
[
1⋯Np

]T
,

Table 2). As such, the model is, therefore, not identifiable 
with the data of only one batch experiment.

To provide more information, several combinations of 
the experiments B1, B2, FB1, FB2 are selected, including 
one batch (1B), one fed-batch (1FB),and two experiments 
in batch and two in fed-batch (2B–2FB). The several experi-
ments convey different information as they were carried out 
with different initial conditions of sucrose concentration (see 
Table 1). The remaining experiments (fermentations B3 and 
B4) are not used for identification, but for cross validation 
(i.e., test of the model prediction against unused data).

Figures 2 and 3 show that model (2) reproduces quite well 
the experimental data in direct validation. For the experi-
ment combinations 1FB and 2B–2FB, rcond(FIM) has been 
significantly increased (see Table 2). Nevertheless, the 
values of some parameters and their associated confidence 
intervals can vary widely depending on the identification 
data base. Logically, the richest database 2B–2FB leads to 
more reasonable values, but still does not allow to capture 
all the parameters reliably (see Table 3). This is logical 
since the FIM is still singular (since rank(FIM) = 38 while 
dim ( FIM ) = 41 when not considering the initial conditions 
at first in the unknown paramter sets—see Table 2). So, the 
additional data are not enough to ensure the identifiability 
of the full model.

It can, therefore, be useful to turn to the sensitivity anal-
ysis and subset selection tools introduced in the previous 
section. Considering u about 10−8 in (20), it follows that 
�−numerical rank(S) = 39 and �−numerical rank(STS ) = 
35 for the identification of model (2) with the experiment 
combination 2B–2FB. Using the subset selection based on 
the QR decomposition (21), the parameters with the lowest 
ordering in Table 4 could be questioned.

Looking at the complete identification results in Table 3 
and the correlation matrix in Fig. 4 can also be a good guide 
in selecting the parameters that could be eliminated from 
the problem. In particular, high-variance parameters can be 
removed when they have a high degree of correlation with 
other parameters [14]. Using these indicators, it seems legiti-
mate to perform the following simplifications:

Table 2  Root-mean-square 
error (RMSE) and singularity 
according different models and 
culture modes

Model RMSE dim
(
�
r

)
dim

(
�
K

)
Rank (FIM) rcond (FIM) FIM

(2)-1B 5.20 25 16 35 3 ×10−53 Singular
(2)-1FB 3.94 25 16 36 7 ×10−25 Singular
(2)-2B-2FB 6.23 25 16 38 6 ×10−21 Singular
(23)-2B-2FB 6.70 20 11 31 2 ×10−10 Regular
(25)-2B-2FB 7.68 20 10 30 10−12 Regular
(25-26)-2B-2FB 6.72 17 10 27 6 × 10−13 Regular
(27–29)-2B-2FB 7 15 8 23 2 × 10−12 Regular
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– do not consider the fungus growth pseudo-reactions r8 
and r9 , thus eliminating YF , YG , KmG , KmF and �mG;

– neglect k1 and k8 , since they assume very small values;
– neglect the term G∕KitGF3 in reaction rate (10) as the 

competitive inhibition constant KitGF3 is quite large.

It must be stressed that eliminating the selected parameters 
does not induce that the corresponding physical mechanisms 
do not exist. Following an optimal experiment design, based 
on the proposed model structure (2), and therefore generating 
adapted new data sets would certainly alleviate, at least, part 
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of this parameter identifiability issue. The above reasoning is, 
therefore, limited to the available information since no other 
data set may currently be obtained. Fixing the non-identifiable 
parameter values using, for instance, knowledge from the lit-
erature may also introduce a strong degree of uncertainty and 
severe bias on the identified parameters. This last solution is, 
therefore, rejected.

The differential equations of the reduced model can be 
rewritten as follows:

(23)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ĠF = D(GFin − GF) − r1 − r5 +
k12

2
r6

GF2 = − D × GF2 − r2 + k5r3 +
k9

2
r5 − r6 +

k14

2
r7

GF3 = − D × GF3 − r3 + k7r4 +
k11

2
r6 − r7

GF4 = − D × GF4 − r4 +
k13

2
r7

F = − D × F + k2r1 + k4r2 + k6r3

G = − D × G +
k10

2
r5

V̇ = Qin − Qout.
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with the reaction rate r7 , initially defined by (10), simpli-
fied to:

(24)r7 =
VmTGF3

GF3

KmtGF3 + GF3

Parameter identification of model (23) with the experiment 
combination 2B–2FB still shows a good predictive capabil-
ity in direct validation (see Figs. 2 and 3). This a posteriori 
confirms the legitimacy of the model reduction. The identifi-
cation results of Table 5 show that most of the uncertainties, 

Table 3  Parameter 
identification results (with 
95% confidence intervals) of 
model (2) considering different 
experiment combinations for 
parameter identification

a Parameter values ( dim
(
�
)
 = 41) of model of Rocha et al. [24]

No. Parameter Literaturea Model (2) Model (2) Model (2)
1 B 1 FB 2B-2FB

1 VmhGF 1.43 0.68 ±6.6 9.2±55 10± 3.3
2 VmhGF2 7.58 6.2 ± 5.4 0.32 ±319 28.9± 4.7
3 VmhGF3 7.97 12 ± 9 13.8 ±8.4 22.8 ± 0.6
4 VmhGF4 7.35 7.6 ± 36 8.9 ± 2.9 8.5 ± 2.2
5 VmtGF 49.99 85 ± 45 67 ± 45 440 ± 118
6 VmtGF2 41.63 205 ± 86 57.2 ± 28.7 217 ± 14
7 VmtGF3 11.53 11 ± 71 6.1 ± 3.9 8.8 ± 4.6
8 �mF 0.0097 2 ± 89 0.07 ± 1.3 0.1 ± 0.3
9 �mG 2.89×10−5 5 × 10−3 ± 17 9 × 10−3 ± 1 0.09 ± 2.7
10 KmhGF 111.57 136± 3 × 103 611± 697 103 ± 456
11 KmhGF2 0.61 136± 3 × 103 8 × 10−12 ±705 250 ± 244
12 KmhGF3 177.41 20.5 ± 52 79 ± 68 85 ± 8
13 KmhGF4 724.07 468 ± 103 409 ± 391 484 ± 69
14 Kmst 70.22 90 ±254 269 ± 77 210 ± 101
15 KmtGF2 239.88 103 ± 103 405 ± 148 627 ± 84
16 KmtGF3 333.07 384 ± 103 87 ± 146 313 ± 39
17 KmF 11.45 8 × 103 ± 3 × 1016 238 ± 3 × 108 496 ± 357
18 KmG 397.98 7 × 103 ± 5 × 105 461 ± 3239 104 ± 104

19 KihGF2 2.72 103 ± 105 0.3± 133 0.24± 0.07
20 KihGF3 10.52 22 ± 43 15 ± 14.8 8.3 ± 0.8
21 KihGF4 6.21 1011 ± 4 × 1022 403.8 ± 4 × 105 2.9 ± 5.9
22 Ksts 911.16 23 ± 9.5 406± 2 × 103 3.1 ± 0.9
23 Kgst 24.57 15 ± 182 104 ± 108 0.06 ± 0.02
24 KitGF2 49.96 106 ± 2 × 1013 4.85 ± 91 0.08 ± 5 × 10−3

25 KitGF3 49.95 2.7 ± 168 32 ± 851 2 × 103 ± 3 × 106

26 YF 79.34 4 × 10−8 ± 105 6 × 10−4 ± 5 × 103 129 ± 272
27 YG 29.23 7 × 103 ± 2 × 107 3 × 103 ± 3 × 105 416 ± 104

28 k1 0.53 3 × 10−10 ± 6 1 ± 9 3 × 10−7 ± 0.2
29 k2 0.53 0.26 ± 2.7 1 ± 6 0.2 ± 0.15
30 k3 0.68 1.4 ± 1.7 71.7 ± 5 × 104 0.14 ± 0.3
31 k4 0.36 0.05 ± 0.3 10−13 ± 155 0.49 ± 0.3
32 k5 0.76 0.7 ± 1 0.8 ± 0.88 0.6 ± 0.1
33 k6 0.27 2 × 10−10 ± 0.7 0.03 ± 0.1 0.09 ± 0.04
34 k7 0.8 3.4 ± 13 3×10−18 ± 5.8 7.7 ± 1.7
35 k8 0.22 10−3 ± 7.5 7.7 × 10−15 ± 1.4 10−6 ± 1.3
36 k9 1.47 1.27 ± 0.4 1.4 ± 0.8 1.78 ± 0.1
37 k10 0.53 0.25 ± 0.2 0.5 ± 1.1 0.47 ± 0.05
38 k11 1.32 1.64 ± 0.5 1.6 ± 0.5 1 ± 0.1
39 k12 0.68 0.85 ± 2 0.8 ± 0.8 0.85 ± 0.1
40 k13 1.24 0.84 ± 5 0.5 ± 0.7 0.7 ± 0.4
41 k14 0.76 1.33 ± 3.4 0.03 ± 1.3 0.46 ± 1
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but not all of them, are reduced. Whereas the FIM is regular 
with condition (17) satisfied and rank (FIM) = dim ( FIM ) = 
31 (see Table 2), �−numerical rank (S) = 30 and �−numerical 
rank(STS ) = 30 instead of Np = 31 . It is, therefore, advisable 
to eliminate one more parameter, and the next in the QR sub-
set selection would be k6 . The L2 norm method is also point-
ing to this parameter and, moreover, the current identification 
results indicate that this pseudo-stoichiometric coefficient is 
very small (see Table 5), and could probably be neglected.

In the light of this last reduction, the 30-parameter 
model is given by:

The identification results for this latter model show that 
the FIM is regular since condition (17) is satisfied and rank 
(FIM) = dim ( FIM ) = �−numerical rank (S) = 30 while 
Np = 30 (see Table 2).

However, some parameters remain associated with 
fairly large uncertainties, and it is proposed to eliminate 
the parameters Kgst, KihGF2 and KihGF4 for which the coef-
ficients of variation are more than 50% (not explicitly 
shown in Table 5, but the second column indicates the 
confidence intervals). Therefore, the simplified reaction 
rates ri , i = 2, 4, 5 become

(25)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ĠF = D(GFin − GF) − r1 − r5 +
k12

2
r6

̇GF2 = − D × GF2 − r2 + k5r3 +
k9

2
r5 − r6 +

k14

2
r7

̇GF3 = − D × GF3 − r3 + k7r4 +
k11

2
r6 − r7

̇GF4 = − D × GF4 − r4 +
k13

2
r7

Ḟ = − D × F + k2r1 + k4r2

Ġ = − D × G +
k10

2
r5

V̇ = Qin − Qout.

(26)

ri =
VmhGFi GFi

KmhGFi + GFi
, r5 =

VmTGF GF

Kmst + GF +
GF2

Ksts

, i = 2, 4.

The coefficients of variation are also large for KmhGF , 
KmhGF2 and KmhGF4 but they are a priori kept in the model 
in view of their important role. Note also that their precision 
is also likely to improve after the model simplification and 
re-identification.

The identification results for model (25, 26) with the data 
combination 2B–2FB show again that the FIM is regular with 
condition (17) satisfied and rank(FIM)=dim (FIM ) while 
Np = 27 (see Table 2).

Note however that rank(S) = �−numerical rank(S) = 26. 
According to the L2-norm of the sensitivities, one could then 
try to eliminate parameter k2 , whose estimated value is very 
small and is associated to a large uncertainty (see Table 5). 
Following this indication, reaction r1 would be eliminated 
with the corresponding parameters VmhGF and KmhGF.

Moreover, �−numerical rank(STS ) = 25 and, accord-
ing to the QR subset selection, one could eliminate the two 
pseudo-stoichiometric coefficients k2 (already pointed out by 
the L2-norm indicator) and k14 which is also very small and 
largely uncertain (see Table 5).

Therefore, the model parametrization is further reduced to 
a set of 23 parameters, and the mass balance ODEs simplify to

with the reaction rates

(27)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ĠF = D(GFin − GF) − r5 +
k12

2
r6

̇GF2 = − D × GF2 − r2 + k5r3 +
k9

2
r5 − r6

̇GF3 = − D × GF3 − r3 + k7r4 +
k11

2
r6 − r7

̇GF4 = − D × GF4 − r4 +
k13

2
r7

Ḟ = − D × F + k4r2

Ġ = − D × G +
k10

2
r5

V̇ = Qin − Qout,

(28)

ri =
VmhGFi GFi

KmhGFi + GFi
, i = 2, 4, r3 =

VmhGF3 GF3

KmhGF3 + GF3 +
GF2

3

KihGF3

,

Fig. 4  Correlation matrix of 
model (23) represented as a 
heatmap. Parameters are num-
bered from 1 to 41 following the 
sequence of the first column of 
Table 3
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(29)

r5 =
VmTGF GF

Kmst + GF +
GF2

Ksts

, ri =
VmTGFj

GFj

KmtGFj + GFj +
G

KitGFj

,

i = 6, 7; j = 2, 3.

The parameter identification of model (27–29) with the 
2B–2FB data configuration (see Table 5) show that all 
parameter uncertainties are very significantly reduced. The 
FIM is regular (see Table 2) with rank(FIM) = rank(S) = 
�−numerical rank(S) = dim ( FIM ) = 23. To complete the 
identifiability analysis, the correlation matrix obtained from 

Table 4  Classification of the model parameters based on the data of 2B–2FB according to the L2 norm and the QR decomposition

41 40 39 38 37 36 35 34

Ranking L2 k1 k8 KitGF3 YG �mG KmG KihGF4 k2

Ranking QR k8 k1 KitGF3 YG YF k3 KihGF4 KmG

33 32 31

Ranking L2 KmF k3 YF

Ranking QR k14 KmF �mG

Table 5  Parameter identification 
results of models (23), (25), 
(25–26) and (27–29) using the 
data combination 2B–2FB

a Variation coefficients of the estimated parameters of model (27–29)

No. Parameter (23) (25) (25-26) (27–29) Vara (%)

VmhGF 0.08 ± 0.27 1.78 ± 0.07 463 ± 29
1 VmhGF2 5.84 ± 3.91 15.15 ± 15.6 6.5 ± 0.3 0.1 ± 0.02 10
2 VmhGF3 7.37 ± 0.25 1.64 ± 0.44 450 ± 40 17.2 ± 0.57 1.66
3 VmhGF4 2.8 ± 1 4.98 ± 1 42.8±12.3 29.5 ± 10 16.95
4 VmtGF 125.7 ± 17 76.4 ± 10.9 151.6 ± 13 167 ± 4.8 1.44
5 VmtGF2 103.9 ± 6.4 401.4 ± 42.2 195.5 ± 19.9 191 ± 9.5 2.49
6 VmtGF3 9.58 ± 1.9 9.98 ± 0.75 8.9 ± 26.8 11.8 ± 1.7 7.20

KmhGF 8.18 ± 4.8 1.43 ± 0.8 8747 ± 1234
7 KmhGF2 72.6 ± 154 0.08 ± 0.35 57.5 ± 40.5 0.36 ± 0.9 125
8 KmhGF3 18.9 ± 4.8 0.8 ± 0.45 1153 ± 227 47.8 ± 4.7 4.92
9 KmhGF4 138.4 ± 39.8 206.7 ± 21.8 2100 ± 303 1730 ± 348 10.06
10 Kmst 264 ± 62 50.3 ± 12.7 1508 ± 203 447 ± 81.6 9.13
11 KmtGF2 197.4 ± 71.5 483.9 ± 193.7 1327 ± 223 492 ± 92 9.35
12 KmtGF3 134.6 ± 27 121 ± 24 509 ± 52 252 ± 48 9.52

KihGF2 0.46 ± 0.47 1 ± 1.2
13 KihGF3 16.2 ± 5.16 11.25 ± 5.5 0.89 ± 0.09 7.97 ± 1.5 9.41

KihGF4 4.48 ± 5.5 2.4 ± 2.1
14 Ksts 11.5 ± 1.9 17.7 ± 4.4 3.1 ± 0.6 7.2 ± 0.6 4.17

Kgst 6.6 ± 18 57.4 ± 357.5
15 KitGF2 0.27 ± 0.03 0.05 ± 0.01 0.24 ± 0.1 0.11 ± 0.01 4.54

k2 4.8 ± 16 0.15 ± 0.04 2 × 10−13 ±0.02
16 k4 0.99 ± 1 0.16 ± 0.06 0.14 ± 0.07 2.46 ± 0.6 12.2
17 k5 0.9 ± 0.3 2.8 ± 0.4 0.64 ± 0.3 0.88 ± 0.12 6.82

k6 9 × 10−16 ±0.07
18 k7 7.8 ± 2 3.7 ± 1.4 11.4 ± 4.5 8.4 ± 1.5 8.93
19 k9 2.3 ± 0.4 2.27 ± 0.22 4.94 ± 0.9 2.23 ± 0.17 3.81
20 k10 0.4 ± 0.05 0.35 ± 0.06 1.56 ± 0.29 0.52 ± 0.05 4.81
21 k11 0.77 ± 0.19 0.55 ± 0.07 2.2 ± 0.7 0.99 ± 0.05 2.52
22 k12 0.56 ± 0.15 1.1 ± 0.14 0.17 ± 0.14 0.47 ± 0.09 9.57
23 k13 0.32 ± 0.11 0.3 ± 0.07 1.26 ± 3.9 0.45 ± 0.11 12.22

k14 1.49 ± 0.78 1.46 ± 0.4 0.05 ± 4.3
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(16) is represented in Fig 5 and shows that, even if all param-
eters appear as identifiable, several strong parameter inter-
dependencies remain ( �ij ≥ 0.7 ). The corresponding correla-
tion coefficients are shown in Table 6. Obviously, four kinds 
of inter-dependencies appear: (i) inner-kinetic dependency 
between the maximum rate coefficients ( VmhGF4, VmtGF,GF2 ) 
and their respective half-saturation and/or inhibition con-
stants ( KmhGF4, Ksts,KitGF2 ), (ii) cross-kinetic dependencies 
between parameters as, for instance, KmtGF3 and VmhGF4 
or KihGF3 and KmhGF4 , (iii) stoichiometric ( k4 , k13)/kinetic 
( VmhGF2,VmtGF3 ) parameter inter-dependency, and (iv) stoi-
chiometric inter-dependency between k12 and k10∕k5 . (i) and 
(iii) can be relatively well understood since the presence of 
multiplicative terms containing parameters may reinforce 

parameter dependency while (ii) and (iv) can be interpreted 
as a consequence of the cascade form of model (27–29) con-
sidering rates 3 and 4, as well as 5–7. 

The interpretation of model (27–29) would therefore be 
based on the following chemical/biological assumptions:

– The fractions of GF involved as reactants or products 
in hydrolysis reactions are negligible compared to the 
fractions consumed or produced by transfructosyla-
tions;

– The fraction of GF2 produced by transfructosylation of 
GF3 is negligible compared to all the fractions produced 
from the other considered reactions;

– The production of fructose is mainly explained by 
hydrolysis of GF2 as well as the production of glucose 
from transfructosylation of GF;

– Under the considered operating conditions, biomass 
dynamics may be neglected.

To double check the predictive capability of the reduced 
model, cross validation is achieved with the batch data 
B3–B4. Figure 6 shows the fit with the data of batch B4. 
Note that cross validation implies the identification of the 
most likely initial conditions listed in Table 7.

To investigate the impact of the parameter uncertainties 
on the model prediction, additional computations can be 
achieved, including the estimation of the covariance of 
the model prediction error, or alternatively, Monte Carlo 
analysis which considers all scenarios generated from the 

Fig. 5  Correlation matrix of 
model (27–29) represented as a 
heatmap. Parameters are num-
bered from 1 to 23 following the 
sequence of the first column of 
Table 5
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Table 6  Remaining high parameter correlations

First parameter Second parameter Correlation 
coefficient

KmhGF4 VmhGF3 − 0.739
KmhGF4 VmhGF4 0.715
KmtGF3 VmhGF4 0.898
KihGF3 KmhGF4 − 0.885
Ksts VmtGF − 0.791
KitGF2 VmtGF2 − 0.789
k4 VmhGF2 − 0.95
k12 k10 − 0.725
k12 k5 − 0.868
k13 VmtGF3 − 0.814

Table 7  Identification of initial 
conditions of the fermentation 
B3 and B4 for cross validation

Batch fermenta-
tion

GF(0) GF2(0) GF3(0) GF4(0) F(0) G(0)

B3 160 4.4 10.1 10−3 6.3 10.1
B4 177.4 5 × 10−3 0.04 1.2 7.30 30.2
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Fig. 6  Cross validation of reduced model (27–29) using fermentation B4 (RMSE = 9.43)
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Fig. 7  Time evolution of the concentrations in experiment B1. All 
the experimental samples (green dots with 95% black error bars) have 
a non-empty intersection with the 95% confidence intervals (blach 
dashed lines) of the simulated concentrations (red solid lines)—

Monte Carlo simulation (200 trajectories in light grey) with a mean 
trajectory in purple, and 95%-confidence corridors in dashed cyan 
lines
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estimation error covariance matrix C�  obtained by invert-
ing the FIM.

In the case of batch B1, Fig. 7 shows:

– the trajectory predicted by the dynamic model (red con-
tinuous line);

– the 95% confidence intervals (black dashed lines) of the 
model prediction, which are calculated based on an esti-
mation of the covariance of the model prediction error 
through STFIM−1S;

– Monte Carlo simulation (200 trajectories in light grey) 
corresponding to 200 realizations of the parameter prob-
ability distribution (generated in MATLAB by lhsnorm) 
with mean vector �̂� and covariance matrix FIM −1

(
�̂�, �̂�

)
 . 

The average trajectory is represented in magenta (and 
almost coincides with the model prediction in red), while 
the 95% confidence intervals are represented in cyan.

Conclusion

The main objective of this paper is to show that sensitiv-
ity analysis, the Fisher Information matrix, and parameter 
subset selection based on the QR decomposition can be used 
as systematic tools to reduce detailed biological models to 
representations which are practically identifiable with the 
data at hand. Indeed, a priori process knowledge often leads 
to the derivation of models which are over-parametrized, at 
least when considering the limited information content of 
usual batch and fed-batch experiments. Of course, experi-
ment design is of paramount importance and informative 
experiments allows improving parameter accuracy and pre-
cision, but at the expense of time consuming and delicate 
experimentation. As a case study, the reduction of a dynamic 
model of the bioproduction of FOS is discussed. The pro-
cedure allows reducing drastically the number of model 
parameters from 41 to 23, in several successive steps where 
intermediate models are estimated and analyzed.
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