18,534 research outputs found
Quark masses in QCD: a progress report
Recent progress on QCD sum rule determinations of the light and heavy quark
masses is reported. In the light quark sector a major breakthrough has been
made recently in connection with the historical systematic uncertainties due to
a lack of experimental information on the pseudoscalar resonance spectral
functions. It is now possible to suppress this contribution to the 1% level by
using suitable integration kernels in Finite Energy QCD sum rules. This allows
to determine the up-, down-, and strange-quark masses with an unprecedented
precision of some 8-10%. Further reduction of this uncertainty will be possible
with improved accuracy in the strong coupling, now the main source of error. In
the heavy quark sector, the availability of experimental data in the vector
channel, and the use of suitable multipurpose integration kernels allows to
increase the accuracy of the charm- and bottom-quarks masses to the 1% level.Comment: Invited review paper to be published in Modern Physics Letters
Azimuthal Correlations in p-p collisions
We report the analysis of experimental azimuthal correlations measured by
STAR in p-p collisions at = 200 GeV. We conclude that for a fit
of data using Pythia event generator we need to include two values of .Comment: 4 page, 3 figures. Prepared for X Mexican Workshop on Particles and
Fields. Morelia Mich. Nov 7-12, 200
Corrections to the Gell-Mann-Oakes-Renner relation and chiral couplings and
Next to leading order corrections to the
Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite
Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two
types of integration kernels in the FESR are used to suppress the contribution
of the kaon radial excitations to the hadronic spectral function, one with
local and the other with global constraints. The result for the pseudoscalar
current correlator at zero momentum is , leading to the chiral corrections to GMOR: . The resulting uncertainties are mostly due to variations in the upper
limit of integration in the FESR, within the stability regions, and to a much
lesser extent due to the uncertainties in the strong coupling and the strange
quark mass. Higher order quark mass corrections, vacuum condensates, and the
hadronic resonance sector play a negligible role in this determination. These
results confirm an independent determination from chiral perturbation theory
giving also very large corrections, i.e. roughly an order of magnitude larger
than the corresponding corrections in chiral . Combining
these results with our previous determination of the corrections to GMOR in
chiral , , we are able to determine two low
energy constants of chiral perturbation theory, i.e. , and , both at the
scale of the -meson mass.Comment: Revised version with minor correction
Zero-energy peak of the density of states and localization properties of a one-dimensional Frenkel exciton: Off-diagonal disorder
We study a one-dimensional Frenkel Hamiltonian with off-diagonal disorder,
focusing our attention on the physical nature of the zero-energy peak of the
density of states. The character of excitonic states (localized or delocalized)
is also examined in the vicinity of this peak. It is shown that the state being
responsible for the peak is localized. A detailed comparison of the
nearest-neighbor approach with the long-range dipole-dipole coupling is
performed.Comment: 15 pages with 7 figures (REVTeX). To appear in Physical Review
Understanding delocalization in the Continuous Random Dimer model
We propose an explanation of the bands of extended states appearing in random
one dimensional models with correlated disorder, focusing on the Continuous
Random Dimer model [A.\ S\'{a}nchez, E.\ Maci\'a, and F.\ Dom\'\i nguez-Adame,
Phys.\ Rev.\ B {\bf 49}, 147 (1994)]. We show exactly that the transmission
coefficient at the resonant energy is independent of the number of host sites
between two consecutive dimers. This allows us to understand why are there
bands of extended states for every realization of the model as well as the
dependence of the bandwidths on the concentration. We carry out a perturbative
calculation that sheds more light on the above results. In the conclusion we
discuss generalizations of our results to other models and possible
applications which arise from our new insight of this problem.Comment: REVTeX 3.0, 4 pages, 4 figures (hard copy on request from
[email protected]), Submitted to Phys Rev
Large Scale Morphological Segregation in Optically Selected Galaxy Redshift Catalogs
We present the results of an exhaustive analysis of the morphological
segregation of galaxies in the CfA and SSRS catalogs through the scaling
formalism. Morphological segregation between ellipticals and spirals has been
detected at scales up to 15-20 h Mpc in the CfA catalog, and up to 20-30
h Mpc in the SSRS catalog. Moreover, it is present not only in the
densest areas of the galaxy distribution, but also in zones of moderate
density.Comment: 9 pages, (1 figure included), uuencode compressed Postscript,
(accepted for publication in ApJ Letters), FTUAM-93-2
- …