2,936 research outputs found
Quasi-Ballistic Electron Transport in Random Superlattices
We theoretically study electron transport in disordered, quantum-well based,
semiconductor superlattices with structural short-range correlations. Our
system consists of equal width square barriers and quantum wells with two
different thicknesses. The two kinds of quantum wells are randomly distributed
along the growth direction. Structural correlations are introduced by adding
the constraint that one of the wells always appears in pairs. We show that such
correlated disordered superlattices exhibit a strong enhancement of their dc
conductance as compared to usual random ones, giving rise to quasi-ballistic
electron transport. Our predictions can be used to demonstrate experimentally
that structural correlations inhibit the localization effects of disorder. We
specifically describe the way superlattices should be built and experiments
should be carried out for that purpose.Comment: REVTeX 3.0, 7 pages, 4 figures on request from FD-A
([email protected]). Submitted to Physical Review B. Preprint
MA/UC3M/12/199
Absence of localization and large dc conductance in random superlattices with correlated disorder
We study how the influence of structural correlations in disordered systems
manifests itself in experimentally measurable magnitudes, focusing on dc
conductance of semiconductor superlattices with general potential profiles. We
show that the existence of bands of extended states in these structures gives
rise to very noticeable peaks in the finite temperature dc conductance as the
chemical potential is moved through the bands or as the temperature is
increased from zero. On the basis of these results we discuss how dc
conductance measurements can provide information on the location and width of
the bands of extended states. Our predictions can be used to demonstrate
experimentally that structural correlations inhibit the localization effects of
disorder.Comment: REVTeX 3.0, 14 pages, 11 figures available on request from ED
([email protected]). Submitted to Phys Rev B. MA/UC3M/06/9
Excitation decay in one-dimensional disordered systems with paired traps
Incoherent transport of excitations in one-dimensional disordered lattices
with pairs of traps placed at random is studied by numerically solving the
corresponding master equation. Results are compared to the case of lattices
with the same concentration of unpaired traps, and it is found that pairing of
traps causes a slowdown of the decay rate of both the mean square displacement
and the survival probability of excitations. We suggest that this result is due
to the presence of larger trap-free segments in the lattices with paired
disorder, which implies that pairing of traps causes less disruption on the
dynamics of excitations. In the conclusion we discuss the implications of our
work, placing it in a more general context.Comment: REVTeX 3.0, 10 pages, 7 figures available on request from FD-A
([email protected]), Universidad Carlos III preprint MA/UC3M/08/9
Incoherent Exciton Trapping in Self-Similar Aperiodic Lattices
Incoherent exciton dynamics in one-dimensional perfect lattices with traps at
sites arranged according to aperiodic deterministic sequences is studied. We
focus our attention on Thue-Morse and Fibonacci systems as canonical examples
of self-similar aperiodic systems. Excitons progressively extend over the
lattice on increasing time and, in this sense, they act as a probe of the
particular arrangements of traps in each system considered. The analysis of the
characteristic features of their time decay indicates that exciton dynamics in
self-similar aperiodic arrangements of traps is quite close to that observed in
periodic ones, but differs significatively from that corresponding to random
lattices. We also report on characteristic features of exciton motion
suggesting that Fibonacci and Thue-Morse orderings might be clearly observed by
appropriate experimental measurements. In the conclusions we comment on the
implications of our work on the way towards a unified theory of the orderings
of matter.Comment: REVTeX 3.0, 10 pages, 2 figures on request from FD-A
([email protected]). Submitted to Phys Rev B. MA/UC3M/11/9
Manifolds with corners modeled on convenient vector spaces
The authors of the present paper realize a quite systematic study of infinite-dimensional Banach manifolds with corners in [8]. Here, we extend some features of the manifolds with corners modeled on Banach spaces to manifolds with corners modeled on convenient vector spaces, that have arisen as important, in the last years, in Global Analysis
Método de los Elementos de Contorno en algunos problemas de interacción suelo-estructura
Los problemas del comportamiento sismico de estructuras masivas de gran responsabilidad y edificios de gran altura asi como el clásico problema del cimiento de las maquinas vibrantes, hacen que el estudio de la interacci6n suelo- estructura adquiera una gran actualidad. Estos problemas, que implican formas y propiedades complicadas, suponen siempre la necesidad de utilizar un modelo numerico del medio considerado. Aqui se emplea el metodo de los elementos de contorno que dadas sus caracteristicas resulta una alternativa muy sugestiva para modelar el suelo y que hace posible el estudio de problemas tridimensionales a un precio razonable. Se introduce un tipo de elementos para problenas bidimensionales , que incluye una singularidad de tipo logaritmico en uno de sus extremos.Se muestran distribuciones de tensiones obtenidas con este tipo de elementos
Determinación de las tensiones en cabezas de anclaje
El problema de la concentración de tensiones en las proximidades de las cabezas de anclaje ha sido tratado utilizando diversos procedimientos basados en la teoría de la elasticidad, tanto en el caso de anclajes en bloques extremos de vigas pretensadas, como en anclajes pasivos incluidos dentro del material, ya sea este hormigón o suelo en el caso de tablestacas. Los procedimientos más utilizados envuelven un elevado grado de aproximación ante la necesidad de reducir un problema de esta complejidad a los niveles normales en la ingeniería. El presente trabajo analiza el problema bajo dos ópticas diferentes: Primero, un estudio analítico de las tensiones en las proximidades de un anclaje sumergido dentro de un medio cuyos contornos libres se encuentran alejados de él; en segundo lugar se estudia el problema utilizando un método numérico, el Método de los Elementos de Contorno, que hace posible la obtención de la solución no sólo en tensiones sino en desplazamientos y permite tener en cuenta el espesor real de la placa de anclaje, la existencia de bordes libres próximos a un anclaje incluida en el material o el caso de anclajes en los bloques extremos de vigas. El método de los elementos de contorno está siendo objeto de atención en los últimos años por parte de investigadores de muchos países y sus características lo hacen muy indicado frente al método de los Elementos Finitos para problemas como este donde existen zonas de concentración de tensiones o grandes zonas que modelar
- …