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Excitation decay in one-dimensional disordered systems with paired traps 

Angel Sanchez 
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 
and Escuela Politecnica Superior, Universidad Carlos III de Madrid, c./ Butarque 15, E-28911 Leganes, Madrid, Spain 

Francisco Dominguez-Adame and Enrique Macia* 
Departamento de F{sica de Materiales, Facultad de F{sicas, Universidad Complutense, E-28040 Madrid, Spain 

(Received 1 July 1994) 

Incoherent transport of excitations in one-dimensional disordered lattices with pairs of traps 
placed at random is studied by numerically solving the corresponding master equation. Results are 
compared to the case of lattices with the same concentration of unpaired traps, and it is found that 
pairing of traps causes a slowdown of the decay rate of both the mean square displacement and 
the survival probability of excitations. We suggest that this result is due to the presence of larger 
trap-free segments in the lattices with paired disorder, which implies that pairing of traps causes 
less disruption on the dynamics of excitations. In the conclusion we discuss the implications of our 
work, placing it in a more general context. 

I. INTRODUCTION 

Transport properties of randomly disordered systems 
are a subject oflong-Iasting interest both from fundamen­
tal and applied viewpoints.1,2 This issue arises in largely 
different physical contexts, many of which can be con­
veniently mapped onto the problem of random walks on 
random lattices. These include particle or excitation dif­
fusion in a random one-dimensional (ID) material, low­
temperature properties of the random ID Heisenberg fer­
romagnet, the ID tight-binding electron problem with 
diagonal and off-diagonal disorder, electrical transmis­
sion lines, and excitation transfer along a ID array of 
traps of random depth (see Ref. I and references therein). 
This wide range of applications is the reason why ran­
dom walks on random lattices have become a standard 
model to study transport in disordered mediaj in fact, 
although most of those applications belong to the field of 
condensed matter physics, there have been many parallel 
pure mathematical and interdisciplinary (biology, chem­
istry, and physics) developments.2 In addition, quantum 
tight-binding chains with pair correlated off-diagonal dis­
order are equivalent to phonon (or magnon) uncorrelated 
disorder (E --+ _w2 ), and to classical diffusion (E --+ iW)j 
therefore, pair correlations in the classical diffusion case 
might be useful to understand longer-range correlated 
quantum tight-binding chains. On the other hand, in 
recent years we have witnessed a great deal of work 
that tends to undermine well-established beliefs among 
researchers on the topic of transport in disordered sys­
tems. In particular, studies on quasi particle dynamics in 
ID systems with correlated disorder3- 13 have shown that 
localization of all eigenstates in ID disordered systems 
is not a general result. Correlated disorder means that 
the random parameters of the system are not indepen­
dent within a given correlation length. This correlation 
leads to a competition between the short-range order and 
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the underlying long-range disorder. Such competition is 
ultimately responsible for the occurrence of unexpected 
phenomena like, e.g., whole bands of extended electron 
states.l1,13 In the few years elapsed in this decade these 
results for disordered models exhibiting nonlocalization 
properties have been put on solid grounds. The question 
then arises as to what are the deep physical reasons for 
this behavior. 

Pursuing further the above line of research, in this pa­
per we concern ourselves with the study of the decay of 
incoherent excitations in disordered systems, comparing 
their time decay when correlations are present to that 
of purely random systems. We will use both names ex­
citation and exciton to describe our results on quasipar­
ticle dynamics, since they apply in a more general con­
text. Note that this problem is described by a random 
walk on a random lattice in the way discussed in the 
previous paragraph. We have recently carried out the 
time-domain analysis of coherent (quantum) motion of 
Frenkel excitons in ID systems in the presence of paired 
correlated traps, randomly placed in an otherwise perfect 
lattice.12 By comparing with the dynamics of ID lattices 
with the same number of unpaired traps, we found that 
pairing of traps leads to a ~iowdown of the survival prob­
ability due to the occurrence oflarger segments ofthe lat­
tice which are free of traps. This fact is experimentally 
relevant since, as we have argued recently,14 correlated 
disorder causes the occurrence of characteristic lines in 
the optical spectra of these systems which are not shared 
by uncorrelated disorder. Furthermore, Scher et al. have 
shown how for short and intermediate times ID transport 
may be relevant even for three-dimensional systems.15 
Then it becomes interesting to elucidate whether this 
enhacement of the survival probability due to pairing of 
traps is restricted to the coherent motion or, on the con­
trary, it can be also expected in incoherent motion of 
excitons. This question could be also phrased in terms 
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of the increase of the survival probability being a quan­
tum effect or being a general one. This is the motivation 
of this work; we report on it in this paper according to 
the following scheme. In Sec. Il we describe our model 
and the quantities we are going to use to characterize it. 
In Sec. III we present our results on survival probability, 
mean square displacement, and long-decay asymptotics, 
and discuss how they can be interpreted. We will present 
numerical simulations that clearly indicate that pairing 
of traps leads to a slowdown of the time decay of inco­
herent excitations in ID random systems. Also, pairing 
dramatically affects the excitation size, measured by its 
mean square displacement, as a function of time. Thus, 
the main conclusion of the above mentioned calculations 
is that structural correlations cause less disruption of the 
lattice, and so the quasiparticle dynamics is less affected 
than it would be expected for the same concentration of 
traps in a purely random system. Section IV concludes 
the paper with a brief summary of our work and some 
comments on implications of its results, which may be of 
interest in a more general physical context. 

11. MODEL 

We consider a ID lattice whose time evolution is de­
scribed by the following master equation for the proba­
bility Pk (t) to find the exciton at site k: 

where F > 0 is the intersite rate constant, which will 
be assumed to be independent of k hereafter. Although 
we restrict ourselves to zero temperature, thermal effects 
can be easily included choosing intersite rate constants 
depending on temperature according to the Boltzmann 
distribution. I Here Gk = G if there is a trap at site k 
and otherwise Gk = 0, where G > 0 is the trapping 
rate. Such a master equation is quite close to those stud­
ied in Refs. 1, 2 as general random trapping models. 
These have been used as simple theoretical approaches 
to discuss the time-dependent effect in fluorescent line­
narrowing experiments concerned with investigations of 
spectral transfer within inhomogeneously broadened op­
ticallines (see, for instance, Ref. 16). 

The magnitude of interest in luminescence experiments 
is the survival probability n(t) defined as 

(2) 

where the index k runs over all lattice sites and ( ... ) 
means ensemble average over all possible arrangements of 
traps. Moreover, assuming that the excitation is initially 
at site ko [Pk(O) = 8kko l, we can also calculate the mean 
square displacement of the excitation as follows: 

(3) 

where the lattice spacing is taken to be unity hereafter. 
These two functions characterize the exciton dynamics in 
the lattice. For instance, in the absence of traps (G = 0) 
it can be shown that n(t) = 1 and R2(t) = 2Dt in infinite 
lattices, D being the difussion coe£ficient.17 We have used 
those results to test the reliability of our numerical calcu­
lations. We note that our choice for the initial condition 
corresponds to an optical pulsed excitation experiment 
where a nonequilibrium localized excitation distribution 
is created at site ko at t = 0; other possible choices are 
relevant in different contexts. Finally, the correlated dis­
order is introduced as follows: We suppose that traps are 
randomly distributed along the lattice but with the addi­
tional constraint that they only appear in pairs of neigh­
boring sites (and hence the correlation length is roughly 
the lattice spacing). Hereafter, we define the fraction of 
traps c as the ratio between the number of sites with a 
trap associated with it and the total number N of sites 
in the lattice. 

Ill. NUMERICAL RESULTS 
AND DISCUSSIONS 

We have numerically solved the master equation (1) 
for lattices of N = 1000 sites using an implicit (Crank­
Nicholson) integration scheme. IS In order to avoid recom­
binations at free ends, spatial periodic boundary condi­
tions are introduced. The initial condition is, as men­
tioned before, Pk(O) = 8kko ' with ko = 500. The trapping 
rate G will be measured in units of F whereas time will 
be expressed in units of F-I. The maximum integration 
time and the integration step were 250 and 5 x 10-4 , re­
spectively. Smaller time steps led to similar results. Since 
we are mainly interested in the effects due to the presence 
of paired traps rather than in the effects of the different 
parameters in the incoherent motion of excitations, we 
will fix the values of F and G, focusing our attention on 
the defect concentration c. Thus we have set F = 1 and 
G = 0.2 henceafter as representative values. The defect 
concentration c ranged from 0.1 up to 0.9, and for each 
lattice a random distribution of paired traps was cho­
sen. The ensembles comprised a number of realizations 
varying from 50 to 200 to check the convergence of the 
computed mean values. The convergence was always sat­
isfactory between all the ensembles. In what follows the 
results we present correspond to 50 averages. In addition 
lattices with unpaired traps have been studied and com­
pared with lattices containing the same fraction of paired 
traps. This enabled us to separate the effects merely due 
to incoherent trapping in one dimension from those as­
pects that manisfest the peculiarities of the correlation 
between random traps. 

In our computations we have found that n(t) decays 
faster as the fraction of traps increases, in both paired 
and unpaired traps cases, as shown in Fig. l(a) and 
Fig. l(b), respectively. This is expected since trapping 
should reduce the probability of finding the excitation 
in any point of the discrete lattice, and this reduction 
is obviously increased on increasing the number of cen­
ters able to trap. In the high concentration limit c -+ 1 
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it is not difficult to demonstrate from (1) and (2) that 
trappping is simply exponential, n(t) = exp( -Gt), be­
cause in this limit the trap distribution exhibits transla­
tional symmetry and equations can be exactly solved. It 
is worth mentioning that such dependence on time agrees 
with the coherent potential approximation (CPA), which 
is known to be exact in the high concentration limit.19 

However, this is not the case for a random distribution of 
traps (c < 1), as seen in Fig. 1. The presence of disorder 
causes a nonexponential decay of excitations in systems 
with either paired or unpaired traps. We discuss the 
differences between both kinds of spatial distribution of 
traps below. 

We have found that another important parameter to 
describe the time behavior of excitations is the mean 
square displacement. Our results are shown in Fig. 2(a) 
for paired traps and Fig. 2(b) for unpaired ones. In 
all cases it becomes apparent that the time evolution of 
R2(t) arises from the competition between two processes, 
namely, diffusion (the exciton is transferred from site to 
site, starting at ko) and trapping (the exciton decays in 
time due to trapping). At short times, the first mecha-
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FIG. 1. Logarithm of the survival probability of excitons 
as a function of time for lattices of N = 1000 sites with (a) 
paired and (b) unpaired traps. The fraction of traps is c = 0.2, 
004, 0.6, and 0.8 from top to bottom. Each curve comprises 
the results of 50 averages. 

nism dominates since the exciton is still close to the initial 
position and consequently there are small chances to be 
trapped. On increasing time, the probability of trapping 
also increases because the exciton can be found in a larger 
segment of the lattice. This competition explains the oc­
currence of a well-defined maximum in R2(t), whose po­
sition depends not only on the concentration of traps but 
also on the spatial distribution of traps. Moreover, the 
fact that R2(t) is not a linear function of time is a con­
sequence of the way we have posed the problem, starting 
from a nonequilibrium distribution.2 We elaborate fur­
ther on these points later on. 

Having described the main features of the incoherent 
exciton dynamics and decay due to the presence of traps, 
we now consider the effects of pairing of traps in com­
parison to results obtained in ID lattices with unpaired 
traps. This comparison will be carried out for systems 
with the same fraction of traps, and so the differences 
come simply from the particular distribution of trapping 
centers in each kind of lattice. The main result we found 
is that, in all cases considered, we have observed that the 
exciton decay is slower in the presence of paired traps. 
This is illustrated in Fig. 3 for two different values of c, 
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FIG. 2. Mean square displacement of excitons as a function 
of time for lattices of N = 1000 sites with (a) paired and (b) 
unpaired traps. The fraction of traps is c = 0.2, 004, 0.6, and 
0.8 from top to bottom. Each curve comprises the results of 
50 averages. 
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FIG. 3. Logarithm of the survival probability of excitons as 
a function of time for lattices of N = 1000 sites with paired 
(solid lines) and unpaired (dashed lines) traps. The fraction 
of traps is indicated on each plot, which comprises the results 
of 50 averages. 

namely, c = 0.1 and c = 0.4. This result is similar to 
what we found12 in the case of quantum transport, as 
we mentioned in the Introduction, hence suggesting that 
the origin of this slowdown is similar; that is, pairing of 
traps causes less disruption of the exciton motion on the 
lattice because the average length of segments without 
traps is larger in this situation. This similarity leads us 
to the following important conclusion: The slowdown is 
due only to the particular distribution of traps, whereas 
quantu.m effects do not play any significant role in these 
new phenomena. 

Another possible way to heuristically understand the 
above facts is the following: Consider our master Eq. (1) 
for two sites which form one of the paired traps we are 
discussing, say, sites k and k + 1, and define pI == Pk + 
Pk+l, i.e., the probability to be in any of the two sites. 
By using Eq. (1) for sites k and k + 1 we can write down 
the following equation for pI: 

d I ( ') I dtP = F Pk+2 + Pk-l - P - GP, (4) 

where we have taken into account that Gk = G k+1 = G 
as both sites contain traps. It can be readily seen that 
Eq. (4) is similar to Eq. (1) but we have re normalized 
the paired trap sites into anew, single site, with the 
same trapping rate but smaller intersite constant (which 
in fact violates detailed balance). From this we learn 
that the effect of the paired trap is basically as if it were 
one trap; however, the fact that the intersite rate out of 
the (re normalized) site is reduced forces the excitation 
to stay longer in it, thus increasing the (effective) prob­
ability of being trapped. We see then that the paired 
trap cannot be trivially compared or dealt with as if it 
were a single one. We note that this argument is just a 
heuristic one, as the situation is different if we renormal­
ize one site which belongs to a pair and one which does 
not, but it can be seen that eventually (they should have 
to be renormalized once again as they would also be a 

pair in the renormalized equation) the effect of the pair 
may be described in the same way we have just argued. 
Of course, this remains just a plausibility argument, as 
further theoretical progress on the basis of this renormal­
ization procedure seems hopeless in view of the spatial 
correlation of the disorder. 

Concerning the exciton mean square displacement, we 
have also compared results in lattices with the same frac­
tion of paired and unpaired traps. I~ Fig. 4 we observe 
that R2(t) is always larger when traps are paired, and 
that the relative difference between both cases increases 
with time. Such differences are also apparent in the max­
imum of R2(t), as the time of reaching this maximum is 
always larger in the case of lattices with paired traps. 
Since we have assumed that the long-time behavior of 
R2(t) is mainly due to trapping effects, these results rein­
force our suggestion that the different exciton behavior in 
both kinds of systems comes mainly from the particular 
distribution of random traps. There is another feature of 
Fig. 4 that deserves attention, namely, that R2(t) is very 
similar in both paired and unpaired trap systems up to a 
time around t ~ 30. This similar behavior also shows up 
in Fig. 3 for n(t). This is easily understood if we recall the 
diffu.sion-trapping competition we mentioned in connec­
tion with the maximum of the mean square displacement: 
Excitation transport properties are diffusion dominated 
in the early stages of the evolution. Until a certain time 
has elapsed, the chances that the excitation has of being 
trapped are very small, as it has visited very few trapping 
sites. It is only after this transient that the traps start 
having a marked effect on the exciton dynamics. There­
fore, only when transport becomes tmpping dominated 
do the differences between paired and unpaired lattices 
arise. 

Finally, let us consider the asymptotic long-time de­
cay law of excitons in the presence of traps. This is an 
interesting problem and several theoretical and experi-
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FIG. 4. Mean square displacement of excitons as a func­
tion of time for lattices of N = 1000 sites with paired (solid 
lines) and unpaired (dashed lines) traps. The fraction of traps 
is indicated on each plot, which comprises the results of 50 
averages. 
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mental works have been devoted to finding the relaxation 
law displayed by excitations in ID systems. In the case 
of incoherent motion, theoretical predictions show that 
the survival probability should decay asymptotically as 
'" exp( _At1/ 3 ) in the case of a low concentration of un­
paired traps,19,20 whereas there are no available results 
in the case of paired ones. We have studied exciton de­
cay at long times for lattices with paired as well as un­
paired traps. It has to be noticed that our calculations 
are not in the asymptotic limit, especially at a low con­
centration of traps, when n(t) decays very slowly, so that 
a direct comparison with analytical results for t ~ 00 

could be inconsistent. On the other hand, the results 
are in the experimental regime, since due to fluorescent 
decay processes and finite anisotropies one can actually 
observe one-dimensional diffusion processes for only a fi­
nite time span.1 Plotting In Iln n(t) I versus In t in the 
range from t = 100 up to 250 we have confirmed that 
the survival probability fit stretched exponentials of the 
form n(t) '" exp( -Ata ) in all cases, as shown in Fig. 5. 
The value of the parameter 0: is lower in the case of lat­
tices with paired traps, hence confirming the fact that 
disorder correlation reduces the exciton decay rate even 
at long time. It is also interesting to mention that 0: 

depends on the concentration of traps, and it increases 
with c in the range of time considered. At low and mod­
erate values of c it becomes of order of 0.6-0.7 whereas 
at higher concentrations is close to unity. These results 
should be regarded only as qualitatively correct since at 
very long times round-off errors increase while the mag­
nitude of n(t) decreases, and hence many averages are 
actually needed to accurately compute the values of the 
exponent, which is rather time consuming. It is then clear 
that a theoretical description would be very valuable for 
a complete understanding of our results. 
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FIG. 5. In Ilnn(t)1 as a function of lnt for lattices of 
N = 1000 sites with paired (solid lines) and unpaired (dashed 
lines) traps. The fraction of traps is indicated on each plot, 
which comprises the results of 50 averages. From top to bot­
tom, the values of the slopes are a = 0.88, 0.79, 0.78, and 
0.61. 

IV. CONCLUSIONS 

The present paper has been devoted to get a more com­
plete and general comprehension of the quasiparticle dy­
namics in ID systems with correlated disorder, which is 
extensively being investigated at present. In particular, 
we have focused on incoherent exciton transport in ID 
random lattices with a certain number of traps appear­
ing in pairs along the lattice, and results have compared 
to those obtained in the case of unpaired ones. In light 
of computations, we have concluded that incoherent exci­
tons decay slower when pairing is introduced, in a similar 
way as we have previously found in the case of (coherent) 
Frenkel excitons.12 We have also seen that the paired na­
ture of the traps indeed gives rise to new effects which 
cannot be simply understood by treating each paired trap 
separately, because intersite transfer rates are also af­
fected. All these phenomena also manifest themselves in 
the square mean displacement, which is found to be larger 
in the case of paired traps at all times, and in the long­
time asymptotics, described by a smaller exponent in the 
stretched exponential dependence. We stress that these 
differences should be noticeable through optical measure­
ments, as in the case of quantum excitations.14 Indeed, a 
most interesting result is that the increasing of the sur­
vival probability and the mean square displacement is not 
a quantum effect, but rather something that comes from 
the fact that there is spatial correlation between traps. 

The previous paragraph summarizes the conclusions 
that can be extracted from our calculations regarding 
the specific application of the model to exciton transport 
properties in solids. In addition, there are some issues of 
more general character that may be learned from what 
we have reported. First, in connection with recent work 
on suppression of localization (see Ref. 11 for a rather 
exhaustive list of references as well as a summary of re­
sults) we see that the consequences of correlation are very 
different due to the largely disparate characteristics of 
wave equations versus diffusion equations: Electrons and 
classical waves delocalize, whereas effects on excitations 
described by random walks are less dramatically exhib­
ited in longer lifetimes. However, in both cases, and in 
spite of being very different problems, correlation has 
very profound effects; this suggests that the influence of 
having nonwhite disorder as usually assumed may be im­
portant in very many fields. Another interesting point is 
related to applications of random walks on random lat­
tices in condensed matter physics, such as those discussed 
in the Introduction. The analytical treatments avail­
able so far rely heavily on sometimes unrealistic assump­
tions, i.e., starting from an equilibrium distribution, like 
the average-T-matrix approximation, or having uncor­
related distributions of traps, like the effective medium 
approximation. 21 To our knowledge, our results are the 
first ones on models which verify none of both hypothe­
ses, and theoretical approaches developed to deal with 
this problem (probably combining some renormalization 
procedure to remove the correlations or reduce their role 
followed by a description in the spirit of effective-medium 
approaches) will be most likely very useful in other sub­
jects in condensed matter physics. Indeed, as the effect 
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of changing the trap pair concentration c on the results is 
only quantitative, it might be possible to develop a theory 
in the case of small or large c (CPA-like) which eventually 
must be valid for any c by an appropriate renormaliza­
tion of the parameters. In this spirit, it might also be 
possible to study a single pair of traps, as inEq. (4), in 
the same way of the case of adding homogeneous impu­
rity pairs in tight-binding chains. As a final remark from 
the viewpoint of applications, it can be expected that the 
calculation presented here will be of use as a means to dis­
cern the local spatial structure of active centers in solids, 
in experiments using pulsed initial excitations. On the 
other hand, were our results found to be experimentally 
relevant, they may be employed to design devices with 
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