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We theoretically study electron transport in disordered, quantum-well-based, semiconductor superlattices 
with structural short-range correlations. Our system consists of equal-width square barriers and quantum wells 
with two different thicknesses. The two kinds of quantum wells are randomly distributed along the growth 
direction. Structural correlations are introduced by adding the constraint that one of the wells always appears 
in pairs. We show that such correlated disordered superlattices exhibit a strong enhancement of their dc 
conductance as compared to usual random ones, giving rise to quasi-ballistic-electron transport. Interestingly, 
this phenomenon is also detected in superlattices with random fluctuations of the well thicknesses. Our pre­
dictions can be used to demonstrate experimentally that structural correlations inhibit the localization effects of 
disorder and, most important, that it should be clearly observed even in the presence of imperfections. 

I. INTRODUCTION 

It is by now well established on firm theoretical grounds 
that electron localization may be suppressed and bands of 
extended states appear in one-dimensional random systems 
with structural short-range correlations (see, e.g., Refs. 1 and 
2, and references therein). This unexpected phenomenon is 
not restricted to electronic systems but rather seems to be 
quite general, as it has also dramatic effects in classical har­
monic chains,3.4 magnon propagation,S or exciton dynamics.6 

Ail these theoretical analyses contradict the earlier belief that 
all eigenstates are localized in one-dimensional disordered 
systems.7 Due to the lack of experimental confirmation, there 
is still some controversy as to the relevance of these results, 
their physical implications on transport properties, and the 
realizability of new devices based on those peculiar proper­
ties. Here we concern ourselves with semiconductor super­
lattices (SL's) in order to find experimentally measurable 
quantities and physically realizable systems that allow for a 
clearcut validation of the above-mentioned results. The rea­
son for the choice of SL's for this purpose is twofold: First, 
they have been already used successfully to observe electron 
localization in intentionally uncorrelated disordered 
quantum-well (QW) based GaAs/Gal-xAIxAs SL'S.8 On the 
other hand, previous results of Diez, Sanchez, and 
Domlnguez-Adame9 on simple, highly idealized models of 
SL's indicate that the effects of correlated disordered SL's 
should be clearly visible in such systems. These two reasons, 
and the fact that a number of studies have been ;erformed to 
date on carrier dynamics in disordered SL's, l make these 
systems the ideal candidates to propose experiments on lo­
calization or delocalization electronic properties. Accord­
ingly, in this paper we deal with GaAs/Gal-xAIxAs SL's 
specifically designed for experiments on correlated disorder. 
In Sec. 11 we present our system and our analytical results on 
transport properties. Section III contains our numerical stud­
ies on electron transport through disordered SL's and the 
effect we will call quasi-ballistic-electron transport. Mer 
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that, we address the question of whether the effect is really 
observable in a real system. To this end, we consider imper­
fect SL's by allowing the QW thicknesses to fluctuate around 
the ideal values and study how this unintentional random­
ness affects electron transport. Section IV ends the paper 
with a summary of our results and a brief discussion on how 
experimental measurements can be carried out. 

11. ANALYTICAL RESULTS 

A. Electron dynamics in QWSL's 

The SL consists of two kinds of semiconductor layers 
(hereafter called A and B) arranged alternatively along the 
growth direction X. Let I1Ec be the conduction-band offset 
defined as E cB - E cA and without loss of generality we will 
take I1Ec>O. In addition, we further consider that the thick­
ness of layers B is the same in the whole SL and denote it by 
b. Denoting by x n the spatial coordinate of the center of the 
nth barrier, the conduction-band profile is given as 
Vsdx)=~nV(x-xn)' where V(x-xn) takes the constant 
value I1Ec for Ix-xnl<b/2 and vanishes otherwise. We fo­
cus on electron states close to the band gap with kJl = 0 and 
use the one-band effective-mass framework to calculate the 
envelope functions 

(1) 

where an explicit dependence of both E and F(x) on quan­
tum numbers is understood and they will be omitted in the 
rest of the paper. We have taken a constant effective mass 
m * at the r valley although this is not a serious limitation as 
our description can be easily generalized to include two dif­
ferent effective masses. Let us consider states below the bar­
rier, which are of most interest to study quantum confine­
ment effects. The corresponding envelope-function values at 
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both sides of a barrier are related via a 2 X 2 transfer matrix 
M(n) whose elements are M ll(n)=M;2(n)=an and 
Mdn) =M;l(n)=f3n where 

f3n= -i ( K~::2)sinh( TJb) exp[ -iK(aXn-b)], (2b) 

with aXn=Xn-Xn-l, K2=2m*E/1i,2, and r1=2m*(V-E)/ 
1i,2. Letting N be the total number of barriers, the transfer 
matrix of the SL is obtained as the product 
T(N)=M(N)MN(N-1)·· ·M(l). The element T ll(N) 
=AN can be easily calculated recursively from the 
relationship2 

An=( an+a:-l:::JAn- l - (:::JA n- 2, (3) 

supplemented by the initial conditions A 0 = 1, A 1 = al. The 
knowledge of A N enables us to obtain the transmission coef­
ficient r at a given energy E, r= lA NI- 2, and the single­
channel, dimensionless Landauer resistance,!l p= 1/r-1 
= I ANI2-l. Finally, the dimensionless Lyapunov coefficient 
is a non-negative parameter given byl2 y= -(l/2N)lnr, be­
ing nothing but the inverse of the localization length in units 
of the SL period. 

B. Transmission through a single DQW 

We now consider a single dimer quantum well (DQW), 
with the kth barrier in between, in an otherwise periodic SL. 
We denote the thickness of the QW in the periodic SL by a 
whereas the thickness of each QW forming the DQW is de­
noted by a'. The condition for an electron to move in the 
periodic SL is ITr[M(1)]1""2 and the corresponding mini­
bands are 

I cos( Ka )cosh( TJb) - ( K~::2) sin( Ka )sinh( TJb) I .... l. (4) 

For brevity we put ak=ak+l=a' and an=a (n1=k, k+1). 
Considering Eq. (3) for n=k, k+1, k+2, eliminating Ak 
and A k+ 1> and setting Re( a' ) = 0 we obtain after a little 
algebra 

(5) 

Besides a constant phase factor of 'TT' which has no effects on 
the magnitudes of interest, Eq. (5) reduces to Eq. (3) for a 
periodic SL in which sites k and k + 1 have been eliminated. 
This means that the reflection coefficient at the DQW van­
ishes and, consequently, there exists complete transparency 
at the resonant energy Er satisfying Re( a') = 0, i.e., 

( 
K2 2) 

cos( Kra' )cosh( TJrb) - 2r - TJr sin( Kra' )sinh( TJrb) = 0, 
KrTJr 

(6) 

where the subscript r refers to the resonant energy Er. Im­
portantly, choosing a' appropriately allows us to locate the 
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FIG. 1. Transmission coefficient around the resonant energy for 
a random QWSL (lower curve) and a DQWSL (upper curve). 
Shown are averages· over 300 realizations, every SL consists of 
N = 500 barriers of b = 200 A whereas the thicknesses of QW are 
a = 200 A and a' = 160 A. Note that the vertical axis is InT. 

resonant energy Er within an allowed miniband of the peri­
odic SL, that is, the resonant energy in the range of energies 
given by Eq. (4). 

Ill. TRANSPORT THROUGH A DQWSL 

We now turn to the problem we are interested in, namely, 
SL's with a finite concentration of DQW's, to verify whether 
the single DQW resonance is still preserved. To this end, we 
apply the previous results to a specific case, namely, 
GaAs/Gao.6SAiO.3SAs. In this case aE c = 0.25 e V and 
m*=0.067m, m being the electron mass. In our computa­
tions we have taken a = b = 200 A and a' = 160 A. With 
these parameters we find from Eq. (4) only one allowed 
miniband below the barrier, ranging from 0.1022 eV up to 
0.1755 eV. The resonant energy is Er= 0.1565 eV from Eq. 
(6) and thus it lies in this allowed miniband. The maximum 
number of barriers we have considered is N = 1000 and the 
number of wells with thickness a' is N/5, although we have 
checked that the main conclusions of the present work are 
independent of this ratio. We have generated random SL's 
with and without the constraint of pairing, but always with 
the same number of wells of thickness a'. The physical mag­
nitudes we are interested in were averaged for several real­
izations of the SL's. The ensembles comprised a number of 
realizations varying from 200 up to 400 to test the conver­
gence of the computed mean values, and this convergence 
was always satisfactory. 

The transmission coefficient around the resonant energy is 
shown in Fig. 1 for SL's with N = 500 barriers. We stress 
that, in spite of the fact that the plot corresponds to an aver­
age over 300 realizations of the SL's, the transmission coef­
ficient for typical realizations behaves in the same way, al­
though noisier. Close to the resonant energy there is an 
interval of energies that shows also very good transmission 
properties, similar to those of the resonant energy. This 
strong peak is not observed when DQW's are absent. Such a 
peak implies the appearance of a deep minimum in the Lan­
dauer resistance close to Er, as it becomes evident from the 
relationship between rand p. For brevity we do not show 
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FIG. 2. Landauer resistance as a function of the number of bar­
riers in GaAs/Gao.~O.35As SL's with DQW for different energies: 
the resonant one E r =0.1565 eV (lower curve), 0.9Er =0.1409 eV 
(middle curve), and 0.8E r =0.1252eV (upper curve). Parameters 
are the same as in Fig. 1. 

the corresponding figure, but it is worth mentioning that 
there are several orders of magnitude between the values of 
the resistance close to Er whether or not DQW's are present. 
In Fig. 2 we present the size dependence results for three 
different energy values (all of them lie in the allowed mini­
band) in random SL's with DQW. For those states with reso­
nant energy Er the behavior is perfectly Ohmic, presenting 
only small fluctuations around the mean value. On the con­
trary, when we separate from the resonant energy we observe 
a non-Ohmic behavior of the resistance increasing exponen­
tially with the system size: the more distant from the reso­
nant energy, the larger the exponential growth of the resis­
tance with the system size. 

We now discuss the absence of localization by correla­
tions in actual SL's, where imperfections during growth ap­
pear. We simulate excess or defect of monolayers during 
growth by allowing ax n to fluctuate around the mean values 
a+b or a'+b. Therefore, axn =a(l+WEn)+b or 
ax n = a ' (1 + W En) + b, where W is a positive parameter 
measuring the fluctuation and En is chosen according to a 
uniform probability distribution P( En) = 1 if I Enl < 1/2 and 
zero otherwise. It is important to stress that {En} is a set of 
random uncorrelated variables, even when the lattice is con­
structed with the constraint that QW's with an average thick­
ness a' always appear in pairs. Therefore, each QW presents 
a slightly different value of its thickness and, as a conse­
quence, it should be expected that resonant coupling between 
electronic states of neighboring QW's decreases. Figure 3 
shows the Lyapunov coefficient around the resonant energy 
Er for perfect and imperfect DQWSL's. A marked minimum 
is observed in all cases, even when fluctuations are relatively 
large, up to 10% . We note that presently available 
molecular-beam epitaxy (MBE) techniques allow for growth 
control better than the previous fluctuations. In contrast, this 
minimum is absent in a random QWSL without imperfec­
tions. This means that a strong enhancement of the localiza­
tion length close to the resonant energy is expected, even if 
there exists an uncorrelated disorder due to growth fluctua­
tions. This is the reason why we claim that delocalization by 
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FIG. 3. Lyapunov coefficient around the resonant energy for a 
DQWSLwith (a) W=O, (b) W=0.05, (c) W=0.10, and (d) random 
QWSL with W=O. Parameters are the same as in Fig. 1. 

correlated disorder is a robust phenomenon and must be ob­
served clearly in SL's. 

IV. CONCLUSIONS 

We have studied electron transport in QW-based random 
SL's with and without DQW, showing that there exists a 
resonant energy for which a complete transparency through a 
single DWQ is achieved. This resonant energy depends only 
on structural parameters (layer thicknesses) in a given SL 
and, consequently, it is possible to place it within a miniband 
of the periodic SL. As a major point, we have found that 
these resonance effects also arise when a finite number of 
DQW are randomly placed in the SL, leading to very good 
transmission in a finite energy range around the resonant one. 
In a simple Kronig-Penney model with dimer impurities we 
have previously found9 that such minimum cause a dramatic 
enhancement of the dc conductivity at finite temperature 
whenever the Fermi level lies close to it. Our present results 
strongly support the idea that similar effects should be ex­
perimentally observable in actual SL's with correlated disor­
der. Moreover, states close to the resonant energy present 
Ohmic behavior, whereas when we deviate from this energy 
the resistance shows an exponential increase with the system 
size. Finally, such quasi-ballistic-electron states present a 
very large localization length, opposite to what occurs in 
random SL's without the constraint of pairing. We feel, how­
ever, that, the most important point we have demonstrated is 
that imperfections inadvertently introduced during growth, 
i.e., random variations of the ideal thicknesses of the QW's, 
have not very significant effects on the delocalization of 
electronic states by correlated disorder with the available 
MBE techniques. This is indeed an important result from a 
practical point of view since it means that deviations of a few 
monolayers from the ideal values of the well thicknesses 
cannot destroy the quantum coherence required to observe 
delocalization. 

Experiments on such SL's would validate (or discard) all 
the recent claims that correlation induces the appearance of 
extended states in spite of disorder. A possible experimental 
setup is as follows. The random SL.is inserted between two 
thick barriers doped with a high density of Si (typically 
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1 X 1018 cm- 3), so that the Fermi level is pinned at the dop­
ant energy level (about 0.14 eV in Gao.6sA1o.3SAs). Different 
random SL's are prepared varying a' while keeping constant 
a and b (say a = b = 200 A as those SL's we have studied). 
By varying the value of a' the resonant energy is moved 
through the allowed miniband (for instance, E F ranges from 
0.1187 eV for a' =220 A up to 0.1643 eV for a'=150A). 
Therefore, plots of the SL dc conductance at low temperature 
as a function of a' should exhibit a clear peak when the 
resonant energy matches the Fermi level. If this maximum is 
actually observed we will then be led to the conclusion than 
quasiballistic transport is taking place. 

We hope that our results may encourage experimental ef­
fort in this direction for two reasons. First, and most impor­
tantly, to validate or not validate the existence of extended 
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