27 research outputs found

    Imprint of Initial Education and Loss of Ly49C/I in Activated Natural Killer Cells of TAP1-KO and C57BL/6 Wildtype Mice

    Get PDF
    Natural killer (NK) cells are important effectors of the innate immune system and participate in the first line of defense against infections and tumors. Prior to being functional, these lymphocytes must be educated or licensed through interactions of their major histocompatibility complex class I molecules with self-specific inhibitory receptors that recognize them. In the absence of such contacts, caused by either the lack of expression of the inhibitory receptors or a very low level of major histocompatibility complex class I (MHC class I) proteins, NK cells are hypo-reactive at baseline ( ex vivo ). After stimulation (assessed through plate-bound antibodies against activating receptors or culture in the presence of cytokines such as interleukin (IL)-2 or IL-15) however, they can become cytotoxic and produce cytokines. This is particularly the case in transporter associated with antigen processing (TAP)-deficient mice, which we investigated in the present study. Transporter associated with antigen processing transports endogenous peptides from the cytosol to the endoplasmic reticulum, where they are loaded on nascent MHC class I molecules, which then become stable and expressed at the cell surface. Consequently, TAP-KO mice have very low levels of MHC class I expression. We present a study about phenotypic and functional aspects of NK cells in two mouse strains, C57BL/6 wildtype and TAP1-KO in spleen and lung. We observed that in both types of mice, on the same genetic background, the initial pattern of education, conferred to the cells via the inhibitory receptors Ly49C/I and NKG2A, was maintained even after a strong stimulation by the cytokines interleukin-2, interleukin-12, interleukin-15 and interleukin-18. Furthermore, the percentages of activated NK cells expressing Ly49C/I and Ly49I were strongly down-modulated under these conditions. We completed our investigations with phenotypic studies of NK cells from these mice

    Nanoluciferase-based cell fusion assay for rapid and high-throughput assessment of SARS-CoV-2-neutralizing antibodies in patient samples.

    Get PDF
    After more than two years, COVID-19 still represents a global health burden of unprecedented extent and assessing the degree of immunity of individuals against SARS-CoV-2 remains a challenge. Virus neutralization assays represent the gold standard for assessing antibody-mediated protection against SARS-CoV-2 in sera from recovered and/or vaccinated individuals. Neutralizing antibodies block the interaction of viral spike protein with human angiotensin-converting enzyme 2 (ACE2) receptor in vitro and prevent viral entry into host cells. Classical viral neutralization assays using full replication-competent viruses are restricted to specific biosafety level 3-certified laboratories, limiting their utility for routine and large-scale applications. We developed therefore a cell-fusion-based assay building on the interaction between viral spike and ACE2 receptor expressed on two different cell lines, substantially reducing biosafety risks associated with classical viral neutralization assays. This chapter describes this simple, sensitive, safe and cost-effective approach for rapid and high-throughput evaluation of SARS-CoV-2 neutralizing antibodies relying on high-affinity NanoLuc® luciferase complementation technology (HiBiT). When applied to a variety of standards and patient samples, this method yields highly reproducible results in 96-well, as well as in 384-well format. The use of novel NanoLuc® substrates with increased signal stability like Nano-Glo® Endurazine™ furthermore allows for high flexibility in assay set-up and full automatization of all reading processes. Lastly, the assay is suitable to evaluate the neutralizing capacity of sera against the existing spike variants, and potentially variants that will emerge in the future

    Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes.

    Get PDF
    Hematopoietic stem and progenitor cells (HSPCs) and leukocytes circulate between the bone marrow (BM) and peripheral blood following circadian oscillations. Autonomic sympathetic noradrenergic signals have been shown to regulate HSPC and leukocyte trafficking, but the role of the cholinergic branch has remained unexplored. We have investigated the role of the cholinergic nervous system in the regulation of day/night traffic of HSPCs and leukocytes in mice. We show here that the autonomic cholinergic nervous system (including parasympathetic and sympathetic) dually regulates daily migration of HSPCs and leukocytes. At night, central parasympathetic cholinergic signals dampen sympathetic noradrenergic tone and decrease BM egress of HSPCs and leukocytes. However, during the daytime, derepressed sympathetic noradrenergic activity causes predominant BM egress of HSPCs and leukocytes via β3-adrenergic receptor. This egress is locally supported by light-triggered sympathetic cholinergic activity, which inhibits BM vascular cell adhesion and homing. In summary, central (parasympathetic) and local (sympathetic) cholinergic signals regulate day/night oscillations of circulating HSPCs and leukocytes. This study shows how both branches of the autonomic nervous system cooperate to orchestrate daily traffic of HSPCs and leukocytes

    A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise.

    Get PDF
    The autonomic nervous system is a master regulator of homeostatic processes and stress responses. Sympathetic noradrenergic nerve fibers decrease bone mass, but the role of cholinergic signaling in bone has remained largely unknown. Here, we describe that early postnatally, a subset of sympathetic nerve fibers undergoes an interleukin-6 (IL-6)-induced cholinergic switch upon contacting the bone. A neurotrophic dependency mediated through GDNF-family receptor-α2 (GFRα2) and its ligand, neurturin (NRTN), is established between sympathetic cholinergic fibers and bone-embedded osteocytes, which require cholinergic innervation for their survival and connectivity. Bone-lining osteoprogenitors amplify and propagate cholinergic signals in the bone marrow (BM). Moderate exercise augments trabecular bone partly through an IL-6-dependent expansion of sympathetic cholinergic nerve fibers. Consequently, loss of cholinergic skeletal innervation reduces osteocyte survival and function, causing osteopenia and impaired skeletal adaptation to moderate exercise. These results uncover a cholinergic neuro-osteocyte interface that regulates skeletogenesis and skeletal turnover through bone-anabolic effects

    Early-to-mid idiopathic Parkinson’s disease shows a more cytotoxic but declined CD8-regulatory peripheral immune profile

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disease. Brain neuroinflammation plays a role in PD pathogenesis. However, the involvement of the peripheral immune system has not been systematically investigated. Here we analyzed >700 combinatorial immunological features in fresh blood of 28 early-to-mid-stage PD patients and 24 matched controls. We found an enhanced cytotoxic immune profile in idiopathic PD patients (iPD), with a higher frequency of terminally-differentiated effector CD8 T (TEMRA), late-differentiated CD8+ natural killer T cells and neutrophils. This immune profile was intensified by elevated serum granzyme A, reduced percentages of CD8+FOXP3+ regulatory T cells and group 2 innate lymphoid cells with immunosuppressive or tolerance-inducing functions. The frequency of CD8 TEMRA was negatively correlated with disease duration, suggesting a contribution to PD pathogenesis. Our work provides a comprehensive map on disturbed peripheral adaptive and innate immune cells in early-to-mid iPD, proposing easily-accessible candidates for early diagnosis and treatments

    Oxidative stress and bioluminescence in the fungi Gerronema viridilucens and Mycena lucentipes

    No full text
    Espécies reativas de oxigênio (EROs) são produzidas normalmente durante o metabolismo de organismos aeróbios. Fungos degradadores de lignina geram estas espécies também no processo de degradação da lignina. As espécies de fungos bioluminescentes Gerronema viridilucens e Mycena lucentipes foram utilizadas para se estabelecer possível dependência entre intensidade de bioluminescência, viabilidade celular e atividades das enzimas de defesa antioxidante e ligninolíticas nos micélios e corpos de frutificação. Verificou-se o efeito de espécies causadoras de estresse químico (metais e fenóis) na emissão de luz, viabilidade celular, defesas antioxidantes e enzimas de respiração celular no fungo bioluminescente G. viridilucens, com o objetivo de conectar a inibição da bioluminescência com danos oxidativos ao organismo. Constatou-se que diferentes espécies de fungos bioluminescentes podem apresentar características diferentes quanto à emissão de luz e proteção antioxidante. Diferenças na intensidade e variação temporal da emissão de luz de diferentes espécies foram observadas nos corpos de frutificação e também no micélio. Isto foi revelado pela irregularidade do perfil de luz reprodutível para a espécie M. lucentipes, ao contrário do observado para G. viridilucens. A viabilidade celular de ambas as espécies varia com o tempo, sendo que no caso de G. viridilucens seu perfil é similar ao da bioluminescência. Os ensaios enzimáticos indicam maior atividade no micélio dos fungos do que nos corpos de frutificação, provavelmente pela função específica reprodutora do corpo de frutificação, enquanto a atividade metabólica do fungo está concentrada no micélio. As enzimas ligninolíticas também apresentam atividade baixa nas culturas estudadas, provavelmente por serem enzimas de degradação extracelulares. O fato de ambas viabilidade celular e bioluminescência do micélio serem reduzidas na presença dos metais (cobre e cádmio) e fenóis (fenol e 2,4,6-triclorofenol) testados atesta a interrelação entre atividade luminogênica e injúria oxidativa aos fungos. Os metais parecem afetar mais negativamente as defesas antioxidantes dos fungos do que os fenóis, os quais possivelmente são eliminados pela atividade da glutationa S-transferase (GST), sem também afetar as demais defesas antioxidantes. No conjunto, estes resultados possibilitam estabelecer uma relação metabólica entre abatimento da bioluminescência e as defesas antioxidantes do organismo. No caso dos metais, os sistemas de defesa antioxidante envolvendo a glutationa são bastante importantes, tanto para eliminar peróxidos produzidos na presença de cobre, como na quelação de cádmio pela glutationa. Sob condições normais, a bioluminescência, defesas antioxidantes e respiração celular do organismo estariam funcionando e o NAD(P)H seria mobilizado por todos estes sistemas. Quando o fungo é submetido ao estresse químico, o fluxo de NAD(P)H seria desviado da bioluminescência para sustentar prioritariamente as defesas antioxidantes e a respiração celular, essenciais para a proteção, manutenção e reprodução do organismoReactive Oxygen Species (ROS) are normally produced during the metabolism of aerobic organisms. Ligninolitic fungi also produce these oxidizing species also during the lignin degradation process. The bioluminescent species Gerronema viridilucens and Mycena lucentipes were studied aiming to establish a correlation between the temporal profiles of bioluminescence, cellular viability and antioxidant defense enzymes and ligninolitic enzymes in mycelium and fruiting bodies. Chemical toxicants such as metals and phenols were here found to affect light emission, cellular viability, antioxidant defenses and cellular respiration enzymes when administered to G. viridilucens, thereby attesting a metabolic connection between bioluminescence inhibition and fungal oxidative damage. Different species of fungi exhibit different characteristics linked to light emission and antioxidant defenses. Differences in light emission displayed by different species do not resume to fruiting bodies, but the light profile and intensity can also vary in the mycelia. This may explain the irreproducibility of the light profile from M. lucentipes, differently to that observed with G. viridilucens. The cellular viability of both species varies with time, G. viridilucens profile being similar to the time course of bioluminescence. The enzymatic data pointed to higher activities in mycelium than in fruiting bodies, probably due to a main reproductive function of the latter, whereas the metabolic activities are prevalent in the mycelium. Ligninolytic enzymes exhibit low activities in the extracts of fungus samples, probably because they are extracellular degradation enzymes. The inhibition effect of phenols and metals (copper and cadmium) on mycelium viability reinforces the notion that cellular oxidative damage hampers bioluminescence emission. Redox active (copper) and heavy metals (cadmium) were found to display higher impact on antioxidant defenses than phenols (phenol and 2,4,6-trichlorophenol), which are expected to be promptly metabolized and excluded by principally glutathione S-transferase (GST). Notably, a metabolic correlation between bioluminescence inhibition and antioxidant defenses was unveiled by the present work. Regarding the metals, glutathione was found to be a crucial antioxidant, both to eliminate peroxides when in the presence of copper, and to act as a cadmium chelating agent. Under normal conditions, the bioluminescence system, the antioxidant defenses and the cellular respiration sets cooperate through the common demand of reducing power of NAD(P)H. Under chemical stress, the NAD(P)H flux would be deviated from bioluminescence, to principally sustain the antioxidant defenses and cellular respiration, essential for the protection, maintenance and reproduction of the organism

    Revisiting the Role of Neurotrophic Factors in Inflammation

    No full text
    The neurotrophic factors are well known for their implication in the growth and the survival of the central, sensory, enteric and parasympathetic nervous systems. Due to these properties, neurturin (NRTN) and Glial cell-derived neurotrophic factor (GDNF), which belong to the GDNF family ligands (GFLs), have been assessed in clinical trials as a treatment for neurodegenerative diseases like Parkinson’s disease. In addition, studies in favor of a functional role for GFLs outside the nervous system are accumulating. Thus, GFLs are present in several peripheral tissues, including digestive, respiratory, hematopoietic and urogenital systems, heart, blood, muscles and skin. More precisely, recent data have highlighted that different types of immune and epithelial cells (macrophages, T cells, such as, for example, mucosal-associated invariant T (MAIT) cells, innate lymphoid cells (ILC) 3, dendritic cells, mast cells, monocytes, bronchial epithelial cells, keratinocytes) have the capacity to release GFLs and express their receptors, leading to the participation in the repair of epithelial barrier damage after inflammation. Some of these mechanisms pass on to ILCs to produce cytokines (such as IL-22) that can impact gut microbiota. In addition, there are indications that NRTN could be used in the treatment of inflammatory airway diseases and it prevents the development of hyperglycemia in the diabetic rat model. On the other hand, it is suspected that the dysregulation of GFLs produces oncogenic effects. This review proposes the discussion of the biological understanding and the potential new opportunities of the GFLs, in the perspective of developing new treatments within a broad range of human diseases

    A vulneração socioambiental advinda do complexo industrial portuário de Suape: a perspectiva dos moradores da Ilha de Tatuoca – Ipojuca/PE

    No full text
    A comunidade tradicional de pescadores artesanais da Ilha de Tatuoca enfrenta intensos conflitos socioambientais, decorrentes das obras de expansão do Complexo Industrial e Portuário de Suape, em Pernambuco. Nos últimos anos, esses conflitos materializam-se em um profundo processo de desterritorialização das famílias e em uma evidente descaracterização da Ilha de Tatuoca, considerada Área de Preservação Permanente (APP). Diante disso, este estudo se preocupa em compreender a percepção e os aspectos subjetivos da população exposta aos conflitos socioambientais, presentes no território. Para tanto, esta pesquisa objetiva analisar o discurso dos moradores da Ilha de Tatuoca sobre o processo de vulneração socioambiental ativo no local
    corecore